File size: 6,514 Bytes
933d305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import argparse
import json
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--add_auxiliary_data", type=bool, help="Whether to add extra data as fine-tuning helper")
    parser.add_argument("--languages", default="CJE")
    args = parser.parse_args()
    if args.languages == "CJE":
        langs = ["[ZH]", "[JA]", "[EN]"]
    elif args.languages == "CJ":
        langs = ["[ZH]", "[JA]"]
    elif args.languages == "C":
        langs = ["[ZH]"]
    new_annos = []
    # Source 1: transcribed short audios
    if os.path.exists("short_character_anno.txt"):
        with open("short_character_anno.txt", 'r', encoding='utf-8') as f:
            short_character_anno = f.readlines()
            new_annos += short_character_anno
    # Source 2: transcribed long audio segments
    if os.path.exists("./long_character_anno.txt"):
        with open("./long_character_anno.txt", 'r', encoding='utf-8') as f:
            long_character_anno = f.readlines()
            new_annos += long_character_anno

    # Get all speaker names
    speakers = []
    for line in new_annos:
        path, speaker, text = line.split("|")
        if speaker not in speakers:
            speakers.append(speaker)
    assert (len(speakers) != 0), "No audio file found. Please check your uploaded file structure."
    # Source 3 (Optional): sampled audios as extra training helpers
    if args.add_auxiliary_data:
        with open("./sampled_audio4ft.txt", 'r', encoding='utf-8') as f:
            old_annos = f.readlines()
        # filter old_annos according to supported languages
        filtered_old_annos = []
        for line in old_annos:
            for lang in langs:
                if lang in line:
                    filtered_old_annos.append(line)
        old_annos = filtered_old_annos
        for line in old_annos:
            path, speaker, text = line.split("|")
            if speaker not in speakers:
                speakers.append(speaker)
        num_old_voices = len(old_annos)
        num_new_voices = len(new_annos)
        # STEP 1: balance number of new & old voices
        cc_duplicate = num_old_voices // num_new_voices
        if cc_duplicate == 0:
            cc_duplicate = 1


        # STEP 2: modify config file
        with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
            hps = json.load(f)

        # assign ids to new speakers
        speaker2id = {}
        for i, speaker in enumerate(speakers):
            speaker2id[speaker] = i
        # modify n_speakers
        hps['data']["n_speakers"] = len(speakers)
        # overwrite speaker names
        hps['speakers'] = speaker2id
        hps['train']['log_interval'] = 10
        hps['train']['eval_interval'] = 100
        hps['train']['batch_size'] = 16
        hps['data']['training_files'] = "final_annotation_train.txt"
        hps['data']['validation_files'] = "final_annotation_val.txt"
        # save modified config
        with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
            json.dump(hps, f, indent=2)

        # STEP 3: clean annotations, replace speaker names with assigned speaker IDs
        import text
        cleaned_new_annos = []
        for i, line in enumerate(new_annos):
            path, speaker, txt = line.split("|")
            if len(txt) > 150:
                continue
            cleaned_text = text._clean_text(txt, hps['data']['text_cleaners'])
            cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
            cleaned_new_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text)
        cleaned_old_annos = []
        for i, line in enumerate(old_annos):
            path, speaker, txt = line.split("|")
            if len(txt) > 150:
                continue
            cleaned_text = text._clean_text(txt, hps['data']['text_cleaners'])
            cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
            cleaned_old_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text)
        # merge with old annotation
        final_annos = cleaned_old_annos + cc_duplicate * cleaned_new_annos
        # save annotation file
        with open("./final_annotation_train.txt", 'w', encoding='utf-8') as f:
            for line in final_annos:
                f.write(line)
        # save annotation file for validation
        with open("./final_annotation_val.txt", 'w', encoding='utf-8') as f:
            for line in cleaned_new_annos:
                f.write(line)
        print("finished")
    else:
        # Do not add extra helper data
        # STEP 1: modify config file
        with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
            hps = json.load(f)

        # assign ids to new speakers
        speaker2id = {}
        for i, speaker in enumerate(speakers):
            speaker2id[speaker] = i
        # modify n_speakers
        hps['data']["n_speakers"] = len(speakers)
        # overwrite speaker names
        hps['speakers'] = speaker2id
        hps['train']['log_interval'] = 10
        hps['train']['eval_interval'] = 100
        hps['train']['batch_size'] = 16
        hps['data']['training_files'] = "final_annotation_train.txt"
        hps['data']['validation_files'] = "final_annotation_val.txt"
        # save modified config
        with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
            json.dump(hps, f, indent=2)

        # STEP 2: clean annotations, replace speaker names with assigned speaker IDs
        import text

        cleaned_new_annos = []
        for i, line in enumerate(new_annos):
            path, speaker, txt = line.split("|")
            if len(txt) > 150:
                continue
            cleaned_text = text._clean_text(txt, hps['data']['text_cleaners']).replace("[ZH]", "")
            cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
            cleaned_new_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text)

        final_annos = cleaned_new_annos
        # save annotation file
        with open("./final_annotation_train.txt", 'w', encoding='utf-8') as f:
            for line in final_annos:
                f.write(line)
        # save annotation file for validation
        with open("./final_annotation_val.txt", 'w', encoding='utf-8') as f:
            for line in cleaned_new_annos:
                f.write(line)
        print("finished")