kcelia commited on
Commit
82c6741
1 Parent(s): ac73113

chore: update

Browse files
Files changed (1) hide show
  1. dev.py +8 -4
dev.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  import shutil
2
 
3
  from pathlib import Path
@@ -7,7 +9,8 @@ import pandas as pd
7
  from concrete.ml.sklearn import LogisticRegression as ConcreteLogisticRegression
8
  from concrete.ml.deployment import FHEModelDev
9
 
10
- # Files location
 
11
  TRAINING_FILE_NAME = "./data/Training_preprocessed.csv"
12
  TESTING_FILE_NAME = "./data/Testing_preprocessed.csv"
13
 
@@ -15,8 +18,6 @@ TESTING_FILE_NAME = "./data/Testing_preprocessed.csv"
15
  df_train = pd.read_csv(TRAINING_FILE_NAME)
16
  df_test = pd.read_csv(TESTING_FILE_NAME)
17
 
18
- print(df_train.shape)
19
- print(df_train.columns)
20
  # Split the data into X_train, y_train, X_test_, y_test sets
21
  TARGET_COLUMN = ["prognosis_encoded", "prognosis"]
22
 
@@ -26,14 +27,17 @@ y_test = df_test[TARGET_COLUMN[0]].values.flatten()
26
  X_train = df_train.drop(TARGET_COLUMN, axis=1)
27
  X_test = df_test.drop(TARGET_COLUMN, axis=1)
28
 
 
 
29
  # Models parameters
30
  optimal_param = {"C": 0.9, "n_bits": 13, "solver": "sag", "multi_class": "auto"}
31
 
32
- # Concrete ML model
33
  clf = ConcreteLogisticRegression(**optimal_param)
34
 
 
35
  clf.fit(X_train, y_train)
36
 
 
37
  fhe_circuit = clf.compile(X_train)
38
 
39
  fhe_circuit.client.keygen(force=False)
 
1
+ """Generating deployment files."""
2
+
3
  import shutil
4
 
5
  from pathlib import Path
 
9
  from concrete.ml.sklearn import LogisticRegression as ConcreteLogisticRegression
10
  from concrete.ml.deployment import FHEModelDev
11
 
12
+
13
+ # Data files location
14
  TRAINING_FILE_NAME = "./data/Training_preprocessed.csv"
15
  TESTING_FILE_NAME = "./data/Testing_preprocessed.csv"
16
 
 
18
  df_train = pd.read_csv(TRAINING_FILE_NAME)
19
  df_test = pd.read_csv(TESTING_FILE_NAME)
20
 
 
 
21
  # Split the data into X_train, y_train, X_test_, y_test sets
22
  TARGET_COLUMN = ["prognosis_encoded", "prognosis"]
23
 
 
27
  X_train = df_train.drop(TARGET_COLUMN, axis=1)
28
  X_test = df_test.drop(TARGET_COLUMN, axis=1)
29
 
30
+ # Concrete ML model
31
+
32
  # Models parameters
33
  optimal_param = {"C": 0.9, "n_bits": 13, "solver": "sag", "multi_class": "auto"}
34
 
 
35
  clf = ConcreteLogisticRegression(**optimal_param)
36
 
37
+ # Fit the model
38
  clf.fit(X_train, y_train)
39
 
40
+ # Compile the model
41
  fhe_circuit = clf.compile(X_train)
42
 
43
  fhe_circuit.client.keygen(force=False)