encrypted-anonymization / fhe_anonymizer.py
kcelia's picture
chore: update the space with layout
174cd37 unverified
import json
import re
import time
import uuid
from pathlib import Path
from transformers import AutoModel, AutoTokenizer
from utils_demo import *
from concrete.ml.common.serialization.loaders import load
from concrete.ml.deployment import FHEModelClient, FHEModelServer
TOLERANCE_PROBA = 0.77
CURRENT_DIR = Path(__file__).parent
DEPLOYMENT_DIR = CURRENT_DIR / "deployment"
KEYS_DIR = DEPLOYMENT_DIR / ".fhe_keys"
class FHEAnonymizer:
def __init__(self):
# Load tokenizer and model
self.tokenizer = AutoTokenizer.from_pretrained("obi/deid_roberta_i2b2")
self.embeddings_model = AutoModel.from_pretrained("obi/deid_roberta_i2b2")
self.punctuation_list = PUNCTUATION_LIST
self.uuid_map = read_json(MAPPING_UUID_PATH)
self.client = FHEModelClient(DEPLOYMENT_DIR, key_dir=KEYS_DIR)
self.server = FHEModelServer(DEPLOYMENT_DIR)
def generate_key(self):
clean_directory()
# Creates the private and evaluation keys on the client side
self.client.generate_private_and_evaluation_keys()
# Get the serialized evaluation keys
self.evaluation_key = self.client.get_serialized_evaluation_keys()
assert isinstance(self.evaluation_key, bytes)
evaluation_key_path = KEYS_DIR / "evaluation_key"
with evaluation_key_path.open("wb") as f:
f.write(self.evaluation_key)
def encrypt_query(self, text: str):
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", text)
encrypted_tokens = []
for token in tokens:
if bool(re.match(r"^\s+$", token)):
continue
# Directly append non-word tokens or whitespace to processed_tokens
# Prediction for each word
emb_x = get_batch_text_representation([token], self.embeddings_model, self.tokenizer)
encrypted_x = self.client.quantize_encrypt_serialize(emb_x)
assert isinstance(encrypted_x, bytes)
encrypted_tokens.append(encrypted_x)
write_pickle(KEYS_DIR / f"encrypted_quantized_query", encrypted_tokens)
def run_server(self):
encrypted_tokens = read_pickle(KEYS_DIR / f"encrypted_quantized_query")
encrypted_output, timing = [], []
for enc_x in encrypted_tokens:
start_time = time.time()
enc_y = self.server.run(enc_x, self.evaluation_key)
timing.append((time.time() - start_time) / 60.0)
encrypted_output.append(enc_y)
write_pickle(KEYS_DIR / f"encrypted_output", encrypted_output)
write_pickle(KEYS_DIR / f"encrypted_timing", timing)
return encrypted_output, timing
def decrypt_output(self, text):
encrypted_output = read_pickle(KEYS_DIR / f"encrypted_output")
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", text)
decrypted_output, identified_words_with_prob = [], []
i = 0
for token in tokens:
# Directly append non-word tokens or whitespace to processed_tokens
if bool(re.match(r"^\s+$", token)):
continue
else:
encrypted_token = encrypted_output[i]
prediction_proba = self.client.deserialize_decrypt_dequantize(encrypted_token)
probability = prediction_proba[0][1]
i += 1
if probability >= TOLERANCE_PROBA:
identified_words_with_prob.append((token, probability))
# Use the existing UUID if available, otherwise generate a new one
tmp_uuid = self.uuid_map.get(token, str(uuid.uuid4())[:8])
decrypted_output.append(tmp_uuid)
self.uuid_map[token] = tmp_uuid
else:
decrypted_output.append(token)
# Update the UUID map with query.
with open(MAPPING_UUID_PATH, "w") as file:
json.dump(self.uuid_map, file)
write_pickle(KEYS_DIR / f"reconstructed_sentence", " ".join(decrypted_output))
write_pickle(KEYS_DIR / f"identified_words_with_prob", identified_words_with_prob)
def run_server_and_decrypt_output(self, text):
self.run_server()
self.decrypt_output(text)