Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import torch | |
import numpy as np | |
MAX_USER_QUERY_LEN = 35 | |
# List of example queries for easy access | |
DEFAULT_QUERIES = { | |
"Example Query 1": "Who visited microsoft.com on September 18?", | |
"Example Query 2": "Does Kate has drive ?", | |
"Example Query 3": "What phone number can be used to contact David Johnson?", | |
} | |
def get_batch_text_representation(texts, model, tokenizer, batch_size=1): | |
""" | |
Get mean-pooled representations of given texts in batches. | |
""" | |
mean_pooled_batch = [] | |
for i in range(0, len(texts), batch_size): | |
batch_texts = texts[i:i+batch_size] | |
inputs = tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True) | |
with torch.no_grad(): | |
outputs = model(**inputs, output_hidden_states=False) | |
last_hidden_states = outputs.last_hidden_state | |
input_mask_expanded = inputs['attention_mask'].unsqueeze(-1).expand(last_hidden_states.size()).float() | |
sum_embeddings = torch.sum(last_hidden_states * input_mask_expanded, 1) | |
sum_mask = input_mask_expanded.sum(1) | |
mean_pooled = sum_embeddings / sum_mask | |
mean_pooled_batch.extend(mean_pooled.cpu().detach().numpy()) | |
return np.array(mean_pooled_batch) | |
def is_user_query_valid(user_query: str) -> bool: | |
""" | |
Check if the `user_query` is None and not empty. | |
Args: | |
user_query (str): The input text to be checked. | |
Returns: | |
bool: True if the `user_query` is None or empty, False otherwise. | |
""" | |
# If the query is not part of the default queries | |
is_default_query = user_query in DEFAULT_QUERIES.values() | |
# Check if the query exceeds the length limit | |
is_exceeded_max_length = user_query is not None and len(user_query) <= MAX_USER_QUERY_LEN | |
return not is_default_query and not is_exceeded_max_length | |