File size: 6,797 Bytes
646bd9e
 
 
 
 
df6182e
 
 
 
d812385
 
646bd9e
 
 
df6182e
 
 
 
646bd9e
d812385
 
 
 
 
 
 
 
 
 
 
646bd9e
2b591f4
 
 
 
 
 
 
646bd9e
2b591f4
646bd9e
 
 
df6182e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628fe8f
df6182e
 
 
 
 
628fe8f
df6182e
 
 
 
 
 
 
 
 
 
 
 
 
 
b160148
646bd9e
 
b160148
646bd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df6182e
646bd9e
 
 
b160148
 
 
646bd9e
b160148
 
646bd9e
df6182e
 
 
 
 
 
 
646bd9e
d812385
646bd9e
d812385
 
 
 
 
 
 
 
2b591f4
646bd9e
d812385
 
 
 
 
b160148
d0b1031
646bd9e
b160148
646bd9e
8bad0f5
646bd9e
 
 
 
 
 
 
df6182e
 
 
 
 
 
 
 
 
 
646bd9e
 
2b591f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""A Gradio app for anonymizing text data using FHE."""

import gradio as gr
from fhe_anonymizer import FHEAnonymizer
import pandas as pd
from openai import OpenAI
import os
import json
import re
from utils_demo import *
from typing import List, Dict, Tuple

anonymizer = FHEAnonymizer()

client = OpenAI(
    api_key=os.environ.get("openaikey"),
)


def check_user_query_fn(user_query: str) -> Dict:
    if is_user_query_valid(user_query):
        # TODO: check if the query is related to our context
        error_msg = ("Unable to process ❌: The request exceeds the length limit or falls "
                    "outside the scope of this document. Please refine your query.")
        print(error_msg)       
        return {input_text: gr.update(value=error_msg)}
    else:
        # Collapsing Multiple Spaces
        return {input_text: gr.update(value=re.sub(" +", " ", user_query))}
        
def deidentify_text(input_text):
    anonymized_text, identified_words_with_prob = anonymizer(input_text)

    # Convert the list of identified words and probabilities into a DataFrame
    if identified_words_with_prob:
        identified_df = pd.DataFrame(
            identified_words_with_prob, columns=["Identified Words", "Probability"]
        )
    else:
        identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
    return anonymized_text, identified_df


def query_chatgpt(anonymized_query):

    with open("files/anonymized_document.txt", "r") as file:
        anonymized_document = file.read()
    with open("files/chatgpt_prompt.txt", "r") as file:
        prompt = file.read()

    # Prepare prompt
    full_prompt = (
        prompt + "\n" 
    )
    query = "Document content:\n```\n" + anonymized_document + "\n\n```" + "Query:\n```\n" + anonymized_query + "\n```"
    print(full_prompt)

    completion = client.chat.completions.create(
        model="gpt-4-1106-preview",  # Replace with "gpt-4" if available
        messages=[
            {"role": "system", "content": prompt},
            {"role": "user", "content": query},
        ],
    )
    anonymized_response = completion.choices[0].message.content
    with open("original_document_uuid_mapping.json", "r") as file:
        uuid_map = json.load(file)
    inverse_uuid_map = {v: k for k, v in uuid_map.items()}  # TODO load the inverse mapping from disk for efficiency

    # Pattern to identify words and non-words (including punctuation, spaces, etc.)
    token_pattern = r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)"
    tokens = re.findall(token_pattern, anonymized_response)
    processed_tokens = []


    for token in tokens:
        # Directly append non-word tokens or whitespace to processed_tokens
        if not token.strip() or not re.match(r"\w+", token):
            processed_tokens.append(token)
            continue

        if token in inverse_uuid_map:
            processed_tokens.append(inverse_uuid_map[token])
        else:
            processed_tokens.append(token)
    deanonymized_response = "".join(processed_tokens)
    return anonymized_response, deanonymized_response


with open("files/original_document.txt", "r") as file:
    original_document = file.read()

with open("files/anonymized_document.txt", "r") as file:
    anonymized_document = file.read()

demo = gr.Blocks(css=".markdown-body { font-size: 18px; }")

with demo:

    gr.Markdown(
        """
        <p align="center">
            <img width=200 src="file/images/logos/zama.jpg">
        </p>
        <h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1>
        <p align="center">
            <a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>
            β€”
            <a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>
            β€”
            <a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>
            β€”
            <a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
        </p>
        """
    )

    with gr.Accordion("What is Encrypted Anonymization?", open=False):
        gr.Markdown(
            """
            Encrypted Anonymization leverages Fully Homomorphic Encryption (FHE) to protect sensitive information during data processing. This approach allows for the anonymization of text data, such as personal identifiers, while ensuring that the data remains encrypted throughout the entire process.
            """
        )

    with gr.Row():
        with gr.Accordion("Original Document", open=True):
            gr.Markdown(original_document)

        with gr.Accordion("Anonymized Document", open=True):
            gr.Markdown(anonymized_document)

    # gr.Markdown(
    #     """
    #     <p align="center">
    #         <img src="file/images/banner.png">
    #     </p>
    #     """
    # )

    ########################## User Query Part ##########################
    with gr.Row():
        input_text = gr.Textbox(value="Who lives in Maine?", label="User query", interactive=True)

        default_query_box = gr.Radio(choices=list(DEFAULT_QUERIES.keys()), label="Example Queries")
           
        default_query_box.change(
            fn=lambda default_query_box: DEFAULT_QUERIES[default_query_box],
            inputs=[default_query_box],
            outputs=[input_text]
        )

        input_text.change(
            check_user_query_fn,
            inputs=[input_text],
            outputs=[input_text],
        )

    anonymized_text_output = gr.Textbox(label="Anonymized Text with FHE", lines=1, interactive=True)

    identified_words_output = gr.Dataframe(label="Identified Words", visible=False)

    submit_button = gr.Button("Anonymize with FHE")

    submit_button.click(
        deidentify_text,
        inputs=[input_text],
        outputs=[anonymized_text_output, identified_words_output],
    )

    with gr.Row():
        chatgpt_response_anonymized = gr.Textbox(label="ChatGPT Anonymized Response", lines=13)
        chatgpt_response_deanonymized = gr.Textbox(label="ChatGPT Deanonymized Response", lines=13)

    chatgpt_button = gr.Button("Query ChatGPT")
    chatgpt_button.click(
        query_chatgpt,
        inputs=[anonymized_text_output],
        outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized],
    )

# Launch the app
demo.launch(share=False)