zaferturan commited on
Commit
5523ece
1 Parent(s): 5fa89a2

Upload 3 files

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. app.py +51 -0
  3. model.keras +3 -0
  4. requirements.txt +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ model.keras filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_drawable_canvas import st_canvas
3
+ import numpy as np
4
+ from PIL import Image
5
+ import tensorflow as tf
6
+ from tensorflow.keras.models import load_model
7
+
8
+ with st.spinner("Model Yükleniyor. Lütfen bekleyiniz!.."):
9
+ model = load_model("model.keras")
10
+
11
+ st.title("Digit Recognition :writing_hand:")
12
+ st.write("El yazısı rakam tahmin aracı")
13
+ st.write("Aşağıdaki alana bir rakam çizin. Model kaç olduğunu tahmin etsin.")
14
+
15
+ rakamlar=[":zero:", ":one:", ":two:", ":three:", ":four:", ":five:", ":six:", ":seven:", ":eight:", ":nine:"]
16
+
17
+ col1, col2 = st.columns([1,2])
18
+
19
+ with col1:
20
+ canvas_result = st_canvas(
21
+ fill_color="rgb(0, 0, 0)", # Başlangıç dolgu rengi siyah
22
+ stroke_width=20,
23
+ stroke_color="rgb(255, 255, 255)", # Başlangıç çizgi rengi beyaz
24
+ background_color="rgb(0, 0, 0)", # Arka plan rengi siyah
25
+ update_streamlit=True, # update_streamlit parametresini False olarak ayarlayın
26
+ width=200,
27
+ height=200,
28
+ drawing_mode="freedraw",
29
+ key="canvas",
30
+ )
31
+
32
+ with col2:
33
+ if st.button("Tahmin Et"):
34
+ col21, col22 = st.columns(2)
35
+ with col21:
36
+ image_data = np.array(canvas_result.image_data)
37
+ image_data = image_data.astype(np.uint8)
38
+ image = Image.fromarray(image_data)
39
+ image = image.resize((28, 28)).convert("L")
40
+ image = np.array(image).reshape((1, 28, 28, 1)) / 255.0
41
+
42
+ prediction = model.predict(image)
43
+ predicted_class = np.argmax(prediction)
44
+ st.title("Sonuç")
45
+ st.title(rakamlar[predicted_class])
46
+
47
+ with col22:
48
+ st.write("Diğer değerler:")
49
+ for i in range(10):
50
+ if np.round(prediction[0][i], 3)>0.0:
51
+ st.write(i, ":",np.round(prediction[0][i] * 100, 2), "%")
model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b33282259fee601747776befea2f6e4c6087aeb87e647b0fe29b7dd52dc7d29
3
+ size 1617208
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit
2
+ tensorflow
3
+ streamlit-drawable-canvas