import os import gradio as gr import numpy as np from gradio_client import Client MODEL_ID = os.getenv("MODEL_ID", "KingNish/SDXL-Flash") MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) client = Client(MODEL_ID) examples = [ "a cat eating a piece of cheese", "a ROBOT riding a BLUE horse on Mars, photorealistic, 4k", "Ironman VS Hulk, ultrarealistic", "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k", "An alien holding a sign board containing the word 'Flash', futuristic, neonpunk", "Kids going to school, Anime style" ] css = ''' .gradio-container{max-width: 700px !important} h1{text-align:center} footer { visibility: hidden } ''' with gr.Blocks(css=css) as demo: gr.Markdown("""# SDXL Flash""") with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", columns=1, show_label=False) with gr.Accordion("Advanced options", open=False): num_images = gr.Slider( label="Number of Images", minimum=1, maximum=4, step=1, value=1, ) with gr.Row(): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) negative_prompt = gr.Text( label="Negative prompt", max_lines=5, lines=4, placeholder="Enter a negative prompt", value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=6, step=0.1, value=3.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=15, step=1, value=8, ) gr.Examples( examples=examples, inputs=prompt, cache_examples=False ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) def generate( prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed, num_images, ): results = [] for _ in range(num_images): response = client.predict( prompt=prompt, negative_prompt=negative_prompt if use_negative_prompt else "", use_negative_prompt=use_negative_prompt, seed=seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, randomize_seed=randomize_seed, use_resolution_binning=True, api_name="/run" ) if isinstance(response, list) and response[0].get("image"): results.append(response[0]["image"]) else: results.append("") return results, seed gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed, num_images ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch()