#llama 3.2 3b IT
import os
from threading import Thread
from typing import Iterator
import gradio as gr
#import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """\
# Llama 3.2 3B Instruct
Llama 3.2 3B is Meta's latest iteration of open LLMs.
This is a demo of [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), fine-tuned for instruction following.
For more details, please check [our post](https://huggingface.co/blog/llama32).
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Download model from Huggingface Hub
# Change this to meta-llama or the correct org name from Huggingface Hub
model_id = "meta-llama/Llama-3.2-3B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
# Main Gradio inference function
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = [{k: v for k, v in d.items() if k != 'metadata'} for d in chat_history]
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
conversation.append({"role": "assistant", "content": ""})
outputs = []
for text in streamer:
outputs.append(text)
bot_response = "".join(outputs)
conversation[-1]['content'] = bot_response
yield "", conversation
# Implementing Gradio 5 features and building a ChatInterface UI yourself
PLACEHOLDER = """
"""
def handle_retry(history, retry_data: gr.RetryData):
new_history = history[:retry_data.index]
previous_prompt = history[retry_data.index]['content']
yield from generate(previous_prompt, chat_history = new_history, max_new_tokens = 1024, temperature = 0.6, top_p = 0.9, top_k = 50, repetition_penalty = 1.2)
def handle_like(data: gr.LikeData):
if data.liked:
print("You upvoted this response: ", data.value)
else:
print("You downvoted this response: ", data.value)
def handle_undo(history, undo_data: gr.UndoData):
chatbot = history[:undo_data.index]
prompt = history[undo_data.index]['content']
return chatbot, prompt
def chat_examples_fill(data: gr.SelectData):
yield from generate(data.value['text'], chat_history = [], max_new_tokens = 1024, temperature = 0.6, top_p = 0.9, top_k = 50, repetition_penalty = 1.2)
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
with gr.Column(elem_id="container", scale=1):
chatbot = gr.Chatbot(
label="Llama3.2 3B Instruct Chatbotw using Gradio 5",
show_label=False,
type="messages",
scale=1,
suggestions = [
{"text": "How many R are there in a Strawberry?"},
{"text": "What is the meaning of life for an AI?"},
{"text": "Are tomatoes vegetables?"},
{"text": "There's a llama in my garden 😱 What should I do?"},
{"text": "What is the best way to open a can of worms?"},
{"text": "The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1. "},
{"text": 'How to setup a human base on Mars? Give short answer.'},
{"text": 'Explain theory of relativity to me like I’m 8 years old.'},
{"text": 'What is 9,000 * 9,000?'},
{"text": 'Write a pun-filled happy birthday message to my friend Alex.'},
{"text": 'Justify why a penguin might make a good king of the jungle.'}
],
placeholder = PLACEHOLDER,
)
msg = gr.Textbox(submit_btn=True, show_label=False)
with gr.Accordion('Additional inputs', open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=10, step=1, value=23, )
temperature = gr.Slider(label="Temperature",minimum=0.1, maximum=4.0, step=0.1, value=0.6,)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, )
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50, )
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, )
msg.submit(generate, [msg, chatbot, max_new_tokens, temperature, top_p, top_k, repetition_penalty], [msg, chatbot])
chatbot.retry(handle_retry, chatbot, [msg, chatbot])
chatbot.like(handle_like, None, None)
chatbot.undo(handle_undo, chatbot, [chatbot, msg])
chatbot.suggestion_select(chat_examples_fill, None, [msg, chatbot] )
demo.launch()