File size: 3,335 Bytes
80be8a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from langchain.chains import RetrievalQA
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.llms import HuggingFacePipeline
from constants import CHROMA_SETTINGS, PERSIST_DIRECTORY
from transformers import LlamaTokenizer, LlamaForCausalLM, pipeline
import click

from constants import CHROMA_SETTINGS

def load_model():
    '''

    Select a model on huggingface. 

    If you are running this for the first time, it will download a model for you. 

    subsequent runs will use the model from the disk. 

    '''
    model_id = "TheBloke/vicuna-7B-1.1-HF"
    tokenizer = LlamaTokenizer.from_pretrained(model_id)

    model = LlamaForCausalLM.from_pretrained(model_id,
                                            #   load_in_8bit=True, # set these options if your GPU supports them!
                                            #   device_map=1#'auto',
                                            #   torch_dtype=torch.float16,
                                            #   low_cpu_mem_usage=True
                                              )

    pipe = pipeline(
        "text-generation",
        model=model, 
        tokenizer=tokenizer, 
        max_length=2048,
        temperature=0,
        top_p=0.95,
        repetition_penalty=1.15
    )

    local_llm = HuggingFacePipeline(pipeline=pipe)

    return local_llm

@click.command()
@click.option('--device_type', default='gpu', help='device to run on, select gpu or cpu')
def main(device_type, ):
    # load the instructorEmbeddings
    if device_type in ['cpu', 'CPU']:
        device='cpu'
    else:
        device='cuda'

    print(f"Running on: {device}")
        
    embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl",
                                                model_kwargs={"device": device})
    # load the vectorstore
    db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
    retriever = db.as_retriever()
    # Prepare the LLM
    # callbacks = [StreamingStdOutCallbackHandler()]
    # load the LLM for generating Natural Language responses. 
    llm = load_model()
    qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
    # Interactive questions and answers
    while True:
        query = input("\nEnter a query: ")
        if query == "exit":
            break
        
        # Get the answer from the chain
        res = qa(query)    
        answer, docs = res['result'], res['source_documents']

        # Print the result
        print("\n\n> Question:")
        print(query)
        print("\n> Answer:")
        print(answer)
        
        # # Print the relevant sources used for the answer
        print("----------------------------------SOURCE DOCUMENTS---------------------------")
        for document in docs:
            print("\n> " + document.metadata["source"] + ":")
            print(document.page_content)
        print("----------------------------------SOURCE DOCUMENTS---------------------------")


if __name__ == "__main__":
    main()