Upload folder using huggingface_hub
Browse files- .gitattributes +3 -0
- .github/workflows/update_space.yml +28 -0
- Infer.py +149 -0
- README.md +3 -10
- T-MoENet_result.json +0 -0
- VideoLoader.py +133 -0
- __pycache__/Infer.cpython-38.pyc +0 -0
- __pycache__/VideoLoader.cpython-38.pyc +0 -0
- app.py +157 -0
- ckpts/deberta-v2-xlarge/config.json +25 -0
- ckpts/deberta-v2-xlarge/pytorch_model.bin +3 -0
- ckpts/deberta-v2-xlarge/spm.model +3 -0
- ckpts/deberta-v2-xlarge/tokenizer_config.json +4 -0
- ckpts/model.pth +3 -0
- model/__pycache__/adapter.cpython-38.pyc +0 -0
- model/__pycache__/deberta_moe.cpython-38.pyc +0 -0
- model/__pycache__/evl.cpython-38.pyc +0 -0
- model/__pycache__/moe.cpython-38.pyc +0 -0
- model/adapter.py +77 -0
- model/deberta_moe.py +1735 -0
- model/evl.py +345 -0
- model/moe.py +442 -0
- tmp.py +30 -0
- tmp2.py +10 -0
- videos/3249402410.mp4 +3 -0
- videos/4882821564.mp4 +3 -0
- videos/6233408665.mp4 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
videos/3249402410.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
videos/4882821564.mp4 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
videos/6233408665.mp4 filter=lfs diff=lfs merge=lfs -text
|
.github/workflows/update_space.yml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Run Python script
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
build:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
|
12 |
+
steps:
|
13 |
+
- name: Checkout
|
14 |
+
uses: actions/checkout@v2
|
15 |
+
|
16 |
+
- name: Set up Python
|
17 |
+
uses: actions/setup-python@v2
|
18 |
+
with:
|
19 |
+
python-version: '3.9'
|
20 |
+
|
21 |
+
- name: Install Gradio
|
22 |
+
run: python -m pip install gradio
|
23 |
+
|
24 |
+
- name: Log in to Hugging Face
|
25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
26 |
+
|
27 |
+
- name: Deploy to Spaces
|
28 |
+
run: gradio deploy
|
Infer.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
import math
|
10 |
+
from tqdm import tqdm
|
11 |
+
import argparse
|
12 |
+
from collections import OrderedDict
|
13 |
+
import json
|
14 |
+
|
15 |
+
from collections import defaultdict
|
16 |
+
from model.deberta_moe import DebertaV2ForMaskedLM
|
17 |
+
from transformers import DebertaV2Tokenizer
|
18 |
+
|
19 |
+
import clip
|
20 |
+
import ffmpeg
|
21 |
+
from VideoLoader import VideoLoader
|
22 |
+
|
23 |
+
def get_mask(lengths, max_length):
|
24 |
+
""" Computes a batch of padding masks given batched lengths """
|
25 |
+
mask = 1 * (
|
26 |
+
torch.arange(max_length).unsqueeze(1) < lengths
|
27 |
+
).transpose(0, 1)
|
28 |
+
return mask
|
29 |
+
|
30 |
+
class Infer:
|
31 |
+
def __init__(self, device):
|
32 |
+
pretrained_ckpt = torch.load("ckpts/model.pth")
|
33 |
+
args = pretrained_ckpt['args']
|
34 |
+
args.n_ans = 2
|
35 |
+
args.max_tokens = 256
|
36 |
+
self.args = args
|
37 |
+
self.clip_model = clip.load("ViT-L/14", device = device)[0]
|
38 |
+
self.tokenizer = DebertaV2Tokenizer.from_pretrained(
|
39 |
+
"ckpts/deberta-v2-xlarge", local_files_only=True
|
40 |
+
)
|
41 |
+
|
42 |
+
self.model = DebertaV2ForMaskedLM.from_pretrained(
|
43 |
+
features_dim=args.features_dim if args.use_video else 0,
|
44 |
+
max_feats=args.max_feats,
|
45 |
+
freeze_lm=args.freeze_lm,
|
46 |
+
freeze_mlm=args.freeze_mlm,
|
47 |
+
ft_ln=args.ft_ln,
|
48 |
+
ds_factor_attn=args.ds_factor_attn,
|
49 |
+
ds_factor_ff=args.ds_factor_ff,
|
50 |
+
dropout=args.dropout,
|
51 |
+
n_ans=args.n_ans,
|
52 |
+
freeze_last=args.freeze_last,
|
53 |
+
pretrained_model_name_or_path="ckpts/deberta-v2-xlarge",
|
54 |
+
local_files_only=False,
|
55 |
+
add_video_feat=args.add_video_feat,
|
56 |
+
freeze_ad=args.freeze_ad,
|
57 |
+
)
|
58 |
+
new_state_dict = OrderedDict()
|
59 |
+
for k, v in pretrained_ckpt['model'].items():
|
60 |
+
new_state_dict[k.replace("module.","")] = v
|
61 |
+
self.model.load_state_dict(pretrained_ckpt, strict=False)
|
62 |
+
self.model.eval()
|
63 |
+
self.model.to(device)
|
64 |
+
self.device = device
|
65 |
+
|
66 |
+
self.video_loader = VideoLoader()
|
67 |
+
self.set_answer()
|
68 |
+
|
69 |
+
def _get_clip_feature(self, video):
|
70 |
+
feat = self.clip_model.encode_image(video.to(self.device))
|
71 |
+
#feat = F.normalize(feat, dim=1)
|
72 |
+
return feat
|
73 |
+
|
74 |
+
def set_answer(self):
|
75 |
+
tok_yes = torch.tensor(
|
76 |
+
self.tokenizer(
|
77 |
+
"Yes",
|
78 |
+
add_special_tokens=False,
|
79 |
+
max_length=1,
|
80 |
+
truncation=True,
|
81 |
+
padding="max_length",
|
82 |
+
)["input_ids"],
|
83 |
+
dtype=torch.long,
|
84 |
+
)
|
85 |
+
tok_no = torch.tensor(
|
86 |
+
self.tokenizer(
|
87 |
+
"No",
|
88 |
+
add_special_tokens=False,
|
89 |
+
max_length=1,
|
90 |
+
truncation=True,
|
91 |
+
padding="max_length",
|
92 |
+
)["input_ids"],
|
93 |
+
dtype=torch.long,
|
94 |
+
)
|
95 |
+
|
96 |
+
a2tok = torch.stack([tok_yes, tok_no])
|
97 |
+
self.model.set_answer_embeddings(
|
98 |
+
a2tok.to(self.model.device), freeze_last=self.args.freeze_last
|
99 |
+
)
|
100 |
+
|
101 |
+
def generate(self, text, video_path, candidates = None):
|
102 |
+
video, video_len = self.video_loader(video_path)
|
103 |
+
video = self._get_clip_feature(video).unsqueeze(0).float()
|
104 |
+
video_mask = get_mask(video_len, 10)
|
105 |
+
video_mask = torch.cat([torch.ones((1,1)),video_mask], dim=1)
|
106 |
+
logits_list = []
|
107 |
+
|
108 |
+
question = text.capitalize().strip()
|
109 |
+
if question[-1] != "?":
|
110 |
+
question = str(question) + "?"
|
111 |
+
|
112 |
+
for aid in range(len(candidates)):
|
113 |
+
prompt = (
|
114 |
+
f" Question: {question} Is it '{candidates[aid]}'? {self.tokenizer.mask_token}. Subtitles: "
|
115 |
+
)
|
116 |
+
prompt = prompt.strip()
|
117 |
+
encoded = self.tokenizer(
|
118 |
+
prompt,
|
119 |
+
add_special_tokens=True,
|
120 |
+
max_length=self.args.max_tokens,
|
121 |
+
padding="longest",
|
122 |
+
truncation=True,
|
123 |
+
return_tensors="pt",
|
124 |
+
)
|
125 |
+
# forward
|
126 |
+
|
127 |
+
output = self.model(
|
128 |
+
video=video.to(self.device),
|
129 |
+
video_mask=video_mask.to(self.device),
|
130 |
+
input_ids=encoded["input_ids"].to(self.device),
|
131 |
+
attention_mask=encoded["attention_mask"].to(self.device),
|
132 |
+
)
|
133 |
+
# += output['loads'].detach().cpu()
|
134 |
+
logits = output["logits"]
|
135 |
+
# get logits for the mask token
|
136 |
+
delay = 11
|
137 |
+
logits = logits[:, delay : encoded["input_ids"].size(1) + delay][
|
138 |
+
encoded["input_ids"] == self.tokenizer.mask_token_id
|
139 |
+
]
|
140 |
+
logits_list.append(logits.softmax(-1)[:, 0])
|
141 |
+
|
142 |
+
logits = torch.stack(logits_list, 1)
|
143 |
+
if logits.shape[1] == 1:
|
144 |
+
preds = logits.round().long().squeeze(1)
|
145 |
+
else:
|
146 |
+
preds = logits.max(1).indices
|
147 |
+
|
148 |
+
return candidates[preds]
|
149 |
+
|
README.md
CHANGED
@@ -1,13 +1,6 @@
|
|
1 |
---
|
2 |
-
title: T
|
3 |
-
emoji: 😻
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: green
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.38.1
|
8 |
app_file: app.py
|
9 |
-
|
10 |
-
|
11 |
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: T-MoENet
|
|
|
|
|
|
|
|
|
|
|
3 |
app_file: app.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 3.46.0
|
6 |
---
|
|
|
|
T-MoENet_result.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
VideoLoader.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch as th
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
import ffmpeg
|
6 |
+
|
7 |
+
|
8 |
+
class Normalize(object):
|
9 |
+
def __init__(self, mean, std):
|
10 |
+
self.mean = th.FloatTensor(mean).view(1, 3, 1, 1)
|
11 |
+
self.std = th.FloatTensor(std).view(1, 3, 1, 1)
|
12 |
+
|
13 |
+
def __call__(self, tensor):
|
14 |
+
tensor = (tensor - self.mean) / (self.std + 1e-8)
|
15 |
+
return tensor
|
16 |
+
|
17 |
+
|
18 |
+
class Preprocessing(object):
|
19 |
+
def __init__(self):
|
20 |
+
self.norm = Normalize(
|
21 |
+
mean=[0.48145466, 0.4578275, 0.40821073],
|
22 |
+
std=[0.26862954, 0.26130258, 0.27577711],
|
23 |
+
)
|
24 |
+
|
25 |
+
def __call__(self, tensor):
|
26 |
+
tensor = tensor / 255.0
|
27 |
+
tensor = self.norm(tensor)
|
28 |
+
return tensor
|
29 |
+
|
30 |
+
|
31 |
+
class VideoLoader:
|
32 |
+
"""Pytorch video loader."""
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
framerate=1,
|
37 |
+
size=224,
|
38 |
+
centercrop=True,
|
39 |
+
):
|
40 |
+
self.centercrop = centercrop
|
41 |
+
self.size = size
|
42 |
+
self.framerate = framerate
|
43 |
+
self.preprocess = Preprocessing()
|
44 |
+
self.max_feats = 10
|
45 |
+
self.features_dim = 768
|
46 |
+
|
47 |
+
def _get_video_dim(self, video_path):
|
48 |
+
probe = ffmpeg.probe(video_path)
|
49 |
+
video_stream = next(
|
50 |
+
(stream for stream in probe["streams"] if stream["codec_type"] == "video"),
|
51 |
+
None,
|
52 |
+
)
|
53 |
+
width = int(video_stream["width"])
|
54 |
+
height = int(video_stream["height"])
|
55 |
+
num, denum = video_stream["avg_frame_rate"].split("/")
|
56 |
+
frame_rate = int(num) / int(denum)
|
57 |
+
return height, width, frame_rate
|
58 |
+
|
59 |
+
def _get_output_dim(self, h, w):
|
60 |
+
if isinstance(self.size, tuple) and len(self.size) == 2:
|
61 |
+
return self.size
|
62 |
+
elif h >= w:
|
63 |
+
return int(h * self.size / w), self.size
|
64 |
+
else:
|
65 |
+
return self.size, int(w * self.size / h)
|
66 |
+
|
67 |
+
def _getvideo(self, video_path):
|
68 |
+
|
69 |
+
if os.path.isfile(video_path):
|
70 |
+
print("Decoding video: {}".format(video_path))
|
71 |
+
try:
|
72 |
+
h, w, fr = self._get_video_dim(video_path)
|
73 |
+
except:
|
74 |
+
print("ffprobe failed at: {}".format(video_path))
|
75 |
+
return {
|
76 |
+
"video": th.zeros(1),
|
77 |
+
"input": video_path
|
78 |
+
}
|
79 |
+
if fr < 1:
|
80 |
+
print("Corrupted Frame Rate: {}".format(video_path))
|
81 |
+
return {
|
82 |
+
"video": th.zeros(1),
|
83 |
+
"input": video_path
|
84 |
+
}
|
85 |
+
height, width = self._get_output_dim(h, w)
|
86 |
+
|
87 |
+
try:
|
88 |
+
cmd = (
|
89 |
+
ffmpeg.input(video_path)
|
90 |
+
.filter("fps", fps=self.framerate)
|
91 |
+
.filter("scale", width, height)
|
92 |
+
)
|
93 |
+
if self.centercrop:
|
94 |
+
x = int((width - self.size) / 2.0)
|
95 |
+
y = int((height - self.size) / 2.0)
|
96 |
+
cmd = cmd.crop(x, y, self.size, self.size)
|
97 |
+
out, _ = cmd.output("pipe:", format="rawvideo", pix_fmt="rgb24").run(
|
98 |
+
capture_stdout=True, quiet=True
|
99 |
+
)
|
100 |
+
except:
|
101 |
+
print("ffmpeg error at: {}".format(video_path))
|
102 |
+
return {
|
103 |
+
"video": th.zeros(1),
|
104 |
+
"input": video_path,
|
105 |
+
}
|
106 |
+
if self.centercrop and isinstance(self.size, int):
|
107 |
+
height, width = self.size, self.size
|
108 |
+
video = np.frombuffer(out, np.uint8).reshape([-1, height, width, 3])
|
109 |
+
video = th.from_numpy(video.astype("float32"))
|
110 |
+
video = video.permute(0, 3, 1, 2) # t,c,h,w
|
111 |
+
else:
|
112 |
+
video = th.zeros(1)
|
113 |
+
|
114 |
+
return {"video": video, "input": video_path}
|
115 |
+
|
116 |
+
def __call__(self, video_path):
|
117 |
+
|
118 |
+
video = self._getvideo(video_path)['video']
|
119 |
+
|
120 |
+
if len(video) > self.max_feats:
|
121 |
+
sampled = []
|
122 |
+
for j in range(self.max_feats):
|
123 |
+
sampled.append(video[(j * len(video)) // self.max_feats])
|
124 |
+
video = th.stack(sampled)
|
125 |
+
video_len = self.max_feats
|
126 |
+
elif len(video) < self.max_feats:
|
127 |
+
video_len = len(video)
|
128 |
+
video = th.cat(
|
129 |
+
[video, th.zeros(self.max_feats - video_len, self.features_dim)], 0
|
130 |
+
)
|
131 |
+
video = self.preprocess(video)
|
132 |
+
return video, video_len
|
133 |
+
|
__pycache__/Infer.cpython-38.pyc
ADDED
Binary file (3.86 kB). View file
|
|
__pycache__/VideoLoader.cpython-38.pyc
ADDED
Binary file (4.17 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shutil
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from fastapi import FastAPI
|
5 |
+
import os
|
6 |
+
import tempfile
|
7 |
+
from Infer import Infer
|
8 |
+
|
9 |
+
title_markdown = ("""
|
10 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
11 |
+
<div>
|
12 |
+
<h1 >Temporal-guided Mixture-of-Experts for Zero-Shot Video Question Answering</h1>
|
13 |
+
<h5 style="margin: 0;">Under review.</h5>
|
14 |
+
</div>
|
15 |
+
</div>
|
16 |
+
|
17 |
+
<div align="center">
|
18 |
+
<div style="display:flex; gap: 0.25rem;" align="center">
|
19 |
+
<a href='https://github.com/qyx1121/T-MoENet'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
|
20 |
+
</div>
|
21 |
+
</div>
|
22 |
+
""")
|
23 |
+
|
24 |
+
block_css = """
|
25 |
+
#buttons button {
|
26 |
+
min-width: min(120px,100%);
|
27 |
+
}
|
28 |
+
"""
|
29 |
+
|
30 |
+
def save_video_to_local(video_path):
|
31 |
+
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4')
|
32 |
+
shutil.copyfile(video_path, filename)
|
33 |
+
return filename
|
34 |
+
|
35 |
+
|
36 |
+
def generate(video, textbox_in, first_run, state, state_):
|
37 |
+
flag = 1
|
38 |
+
if not textbox_in:
|
39 |
+
if len(state_.messages) > 0:
|
40 |
+
textbox_in = state_.messages[-1][1]
|
41 |
+
state_.messages.pop(-1)
|
42 |
+
flag = 0
|
43 |
+
else:
|
44 |
+
return "Please enter instruction"
|
45 |
+
video = video if video else "none"
|
46 |
+
# assert not (os.path.exists(image1) and os.path.exists(video))
|
47 |
+
|
48 |
+
first_run = False if len(state.messages) > 0 else True
|
49 |
+
|
50 |
+
text_en_in = textbox_in.replace("picture", "image")
|
51 |
+
|
52 |
+
# images_tensor = [[], []]
|
53 |
+
image_processor = handler.image_processor
|
54 |
+
if os.path.exists(image1) and not os.path.exists(video):
|
55 |
+
tensor = image_processor.preprocess(image1, return_tensors='pt')['pixel_values'][0]
|
56 |
+
# print(tensor.shape)
|
57 |
+
tensor = tensor.to(handler.model.device, dtype=dtype)
|
58 |
+
images_tensor[0] = images_tensor[0] + [tensor]
|
59 |
+
images_tensor[1] = images_tensor[1] + ['image']
|
60 |
+
print(torch.cuda.memory_allocated())
|
61 |
+
print(torch.cuda.max_memory_allocated())
|
62 |
+
video_processor = handler.video_processor
|
63 |
+
if not os.path.exists(image1) and os.path.exists(video):
|
64 |
+
tensor = video_processor(video, return_tensors='pt')['pixel_values'][0]
|
65 |
+
# print(tensor.shape)
|
66 |
+
tensor = tensor.to(handler.model.device, dtype=dtype)
|
67 |
+
images_tensor[0] = images_tensor[0] + [tensor]
|
68 |
+
images_tensor[1] = images_tensor[1] + ['video']
|
69 |
+
print(torch.cuda.memory_allocated())
|
70 |
+
print(torch.cuda.max_memory_allocated())
|
71 |
+
if os.path.exists(image1) and os.path.exists(video):
|
72 |
+
tensor = video_processor(video, return_tensors='pt')['pixel_values'][0]
|
73 |
+
# print(tensor.shape)
|
74 |
+
tensor = tensor.to(handler.model.device, dtype=dtype)
|
75 |
+
images_tensor[0] = images_tensor[0] + [tensor]
|
76 |
+
images_tensor[1] = images_tensor[1] + ['video']
|
77 |
+
|
78 |
+
|
79 |
+
tensor = image_processor.preprocess(image1, return_tensors='pt')['pixel_values'][0]
|
80 |
+
# print(tensor.shape)
|
81 |
+
tensor = tensor.to(handler.model.device, dtype=dtype)
|
82 |
+
images_tensor[0] = images_tensor[0] + [tensor]
|
83 |
+
images_tensor[1] = images_tensor[1] + ['image']
|
84 |
+
print(torch.cuda.memory_allocated())
|
85 |
+
print(torch.cuda.max_memory_allocated())
|
86 |
+
|
87 |
+
|
88 |
+
text_en_out, state_ = handler.generate(images_tensor, text_en_in, first_run=first_run, state=state_)
|
89 |
+
state_.messages[-1] = (state_.roles[1], text_en_out)
|
90 |
+
|
91 |
+
text_en_out = text_en_out.split('#')[0]
|
92 |
+
textbox_out = text_en_out
|
93 |
+
|
94 |
+
show_images = ""
|
95 |
+
if flag:
|
96 |
+
state.append_message(state.roles[0], textbox_in + "\n" + show_images)
|
97 |
+
state.append_message(state.roles[1], textbox_out)
|
98 |
+
torch.cuda.empty_cache()
|
99 |
+
return (state, state_, state.to_gradio_chatbot(), False, gr.update(value=None, interactive=True), images_tensor, gr.update(value=image1 if os.path.exists(image1) else None, interactive=True), gr.update(value=video if os.path.exists(video) else None, interactive=True))
|
100 |
+
|
101 |
+
|
102 |
+
device = "cuda"
|
103 |
+
handler = Infer(device)
|
104 |
+
# handler.model.to(dtype=dtype)
|
105 |
+
if not os.path.exists("temp"):
|
106 |
+
os.makedirs("temp")
|
107 |
+
|
108 |
+
print(torch.cuda.memory_allocated())
|
109 |
+
print(torch.cuda.max_memory_allocated())
|
110 |
+
|
111 |
+
textbox = gr.Textbox(
|
112 |
+
show_label=False, placeholder="Enter text and press ENTER", container=False
|
113 |
+
)
|
114 |
+
with gr.Blocks(title='T-MoENet', theme=gr.themes.Default(), css=block_css) as demo:
|
115 |
+
gr.Markdown(title_markdown)
|
116 |
+
state = gr.State()
|
117 |
+
state_ = gr.State()
|
118 |
+
first_run = gr.State()
|
119 |
+
images_tensor = gr.State()
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
with gr.Column(scale=3):
|
123 |
+
video = gr.Video(label="Input Video")
|
124 |
+
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
125 |
+
print(cur_dir)
|
126 |
+
gr.Examples(
|
127 |
+
examples=[
|
128 |
+
[
|
129 |
+
cur_dir + "/videos/3249402410.mp4",
|
130 |
+
"what did the lady in black on the left do after she finished spreading the sauce on her pizza?",
|
131 |
+
],
|
132 |
+
[
|
133 |
+
cur_dir + "/videos/4882821564.mp4",
|
134 |
+
"why did the boy clap his hands when he ran to the christmas tree?",
|
135 |
+
],
|
136 |
+
[
|
137 |
+
cur_dir + "/videos/6233408665.mp4",
|
138 |
+
"what did the people on the sofa do after the lady in pink finished singing?",
|
139 |
+
],
|
140 |
+
],
|
141 |
+
inputs=[video, textbox],
|
142 |
+
)
|
143 |
+
|
144 |
+
with gr.Column(scale=7):
|
145 |
+
chatbot = gr.Chatbot(label="T-MoENet", bubble_full_width=True)
|
146 |
+
with gr.Row():
|
147 |
+
with gr.Column(scale=2):
|
148 |
+
textbox.render()
|
149 |
+
with gr.Column(scale=1, min_width=50):
|
150 |
+
submit_btn = gr.Button(
|
151 |
+
value="Send", variant="primary", interactive=True
|
152 |
+
)
|
153 |
+
|
154 |
+
submit_btn.click(generate, [video, textbox, first_run, state, state_],
|
155 |
+
[state, state_, chatbot, first_run, textbox, video])
|
156 |
+
|
157 |
+
demo.launch(share=True)
|
ckpts/deberta-v2-xlarge/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "deberta-v2",
|
3 |
+
"attention_probs_dropout_prob": 0.1,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_dropout_prob": 0.1,
|
6 |
+
"hidden_size": 1536,
|
7 |
+
"initializer_range": 0.02,
|
8 |
+
"intermediate_size": 6144,
|
9 |
+
"max_position_embeddings": 512,
|
10 |
+
"relative_attention": true,
|
11 |
+
"position_buckets": 256,
|
12 |
+
"norm_rel_ebd": "layer_norm",
|
13 |
+
"share_att_key": true,
|
14 |
+
"pos_att_type": "p2c|c2p",
|
15 |
+
"layer_norm_eps": 1e-7,
|
16 |
+
"conv_kernel_size": 3,
|
17 |
+
"conv_act": "gelu",
|
18 |
+
"max_relative_positions": -1,
|
19 |
+
"position_biased_input": false,
|
20 |
+
"num_attention_heads": 24,
|
21 |
+
"attention_head_size": 64,
|
22 |
+
"num_hidden_layers": 24,
|
23 |
+
"type_vocab_size": 0,
|
24 |
+
"vocab_size": 128100
|
25 |
+
}
|
ckpts/deberta-v2-xlarge/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7088de0d6925bbd824e5dfd33db6ca5145231b8fd9f702363f18275f14d50ab9
|
3 |
+
size 1775809831
|
ckpts/deberta-v2-xlarge/spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5598d5e96f339a8d980c15f9afd405a2e5e1be7db41de3ed13b0f03fac1e8c17
|
3 |
+
size 2447305
|
ckpts/deberta-v2-xlarge/tokenizer_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_lower_case": false,
|
3 |
+
"vocab_type": "spm"
|
4 |
+
}
|
ckpts/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0220bc2e00d2f07d89746628f10ed0deb069618d4702f43ee6615f4c9f3a406a
|
3 |
+
size 499452921
|
model/__pycache__/adapter.cpython-38.pyc
ADDED
Binary file (2.52 kB). View file
|
|
model/__pycache__/deberta_moe.cpython-38.pyc
ADDED
Binary file (41.1 kB). View file
|
|
model/__pycache__/evl.cpython-38.pyc
ADDED
Binary file (10.3 kB). View file
|
|
model/__pycache__/moe.cpython-38.pyc
ADDED
Binary file (15.1 kB). View file
|
|
model/adapter.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
import math
|
4 |
+
|
5 |
+
class Adapter(nn.Module):
|
6 |
+
def __init__(
|
7 |
+
self, ds_factor, hidden_dim, ln_after=False, ln_before=False, dropout=0.1
|
8 |
+
):
|
9 |
+
super().__init__()
|
10 |
+
assert not hidden_dim % ds_factor
|
11 |
+
self.down = nn.Linear(hidden_dim, hidden_dim // ds_factor)
|
12 |
+
self.act = nn.ReLU()
|
13 |
+
self.up = nn.Linear(hidden_dim // ds_factor, hidden_dim)
|
14 |
+
self.apply(self.init_weights)
|
15 |
+
self.ln_after = ln_after
|
16 |
+
self.ln_before = ln_before
|
17 |
+
self.dropout = dropout
|
18 |
+
if ln_after or ln_before:
|
19 |
+
self.ln = nn.LayerNorm(hidden_dim)
|
20 |
+
if dropout:
|
21 |
+
self.dropout = nn.Dropout(dropout)
|
22 |
+
|
23 |
+
def init_weights(self, m: nn.Module, std=1e-3):
|
24 |
+
if isinstance(m, nn.Linear):
|
25 |
+
torch.nn.init.normal_(m.weight, std=std)
|
26 |
+
torch.nn.init.normal_(m.bias, std=std)
|
27 |
+
m.weight.data = torch.clamp(m.weight.data, min=-2 * std, max=2 * std)
|
28 |
+
m.bias.data = torch.clamp(m.bias.data, min=-2 * std, max=2 * std)
|
29 |
+
elif isinstance(m, nn.LayerNorm):
|
30 |
+
m.bias.data.zero_()
|
31 |
+
m.weight.data.fill_(1.0)
|
32 |
+
|
33 |
+
def forward(self, hidden_states):
|
34 |
+
if self.ln_before:
|
35 |
+
residual = self.ln(hidden_states)
|
36 |
+
residual = self.down(residual)
|
37 |
+
else:
|
38 |
+
residual = self.down(hidden_states)
|
39 |
+
residual = self.act(residual)
|
40 |
+
if self.dropout:
|
41 |
+
residual = self.dropout(residual)
|
42 |
+
residual = self.up(residual)
|
43 |
+
if self.ln_after:
|
44 |
+
residual = self.ln(hidden_states)
|
45 |
+
return hidden_states + residual
|
46 |
+
|
47 |
+
|
48 |
+
class ST_Adapter(nn.Module):
|
49 |
+
|
50 |
+
def __init__(self, ds_factor, hidden_dim):
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
self.down = nn.Linear(hidden_dim, hidden_dim // ds_factor)
|
54 |
+
self.conv = nn.Conv1d(
|
55 |
+
hidden_dim // ds_factor, hidden_dim // ds_factor,
|
56 |
+
kernel_size=3,
|
57 |
+
stride=1,
|
58 |
+
padding=1,
|
59 |
+
groups=hidden_dim // ds_factor
|
60 |
+
)
|
61 |
+
self.up = nn.Linear(hidden_dim // ds_factor, hidden_dim)
|
62 |
+
nn.init.constant_(self.conv.weight, 0.)
|
63 |
+
nn.init.constant_(self.conv.bias, 0.)
|
64 |
+
nn.init.constant_(self.down.bias, 0.)
|
65 |
+
nn.init.constant_(self.up.bias, 0.)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
N, T, C = x.size()
|
69 |
+
ori_x = x
|
70 |
+
x = self.down(x)
|
71 |
+
x = x.permute(0, 2, 1).contiguous()
|
72 |
+
x = self.conv(x)
|
73 |
+
x = x.permute(0, 2, 1).contiguous()
|
74 |
+
x = self.up(x)
|
75 |
+
x = x + ori_x
|
76 |
+
return x
|
77 |
+
|
model/deberta_moe.py
ADDED
@@ -0,0 +1,1735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch DeBERTa-v2 model. """
|
16 |
+
|
17 |
+
import math
|
18 |
+
from collections.abc import Sequence
|
19 |
+
from typing import Tuple, Optional
|
20 |
+
|
21 |
+
import clip
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
from torch import _softmax_backward_data, nn
|
25 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
26 |
+
|
27 |
+
from .adapter import Adapter
|
28 |
+
from .moe import MoE
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.modeling_outputs import ModelOutput
|
31 |
+
|
32 |
+
from transformers.modeling_utils import PreTrainedModel
|
33 |
+
from transformers import DebertaV2Config, DebertaV2ForSequenceClassification
|
34 |
+
from .evl import EVLTransformer, recursive_gumbel_softmax
|
35 |
+
|
36 |
+
from transformers import pytorch_utils
|
37 |
+
|
38 |
+
_CONFIG_FOR_DOC = "DebertaV2Config"
|
39 |
+
_TOKENIZER_FOR_DOC = "DebertaV2Tokenizer"
|
40 |
+
_CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
|
41 |
+
|
42 |
+
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
43 |
+
"microsoft/deberta-v2-xlarge",
|
44 |
+
"microsoft/deberta-v2-xxlarge",
|
45 |
+
"microsoft/deberta-v2-xlarge-mnli",
|
46 |
+
"microsoft/deberta-v2-xxlarge-mnli",
|
47 |
+
]
|
48 |
+
|
49 |
+
class MaskedLMOutput(ModelOutput):
|
50 |
+
"""
|
51 |
+
Base class for masked language models outputs.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
55 |
+
Masked language modeling (MLM) loss.
|
56 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
57 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
58 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
59 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
60 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
61 |
+
|
62 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
63 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
64 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
65 |
+
sequence_length)`.
|
66 |
+
|
67 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
68 |
+
heads.
|
69 |
+
"""
|
70 |
+
|
71 |
+
loss: Optional[torch.FloatTensor] = None
|
72 |
+
logits: torch.FloatTensor = None
|
73 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
74 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
75 |
+
loss_moe: Optional[torch.FloatTensor] = None
|
76 |
+
loads: Optional[torch.FloatTensor] = None
|
77 |
+
embeddings: Optional[torch.FloatTensor] = None
|
78 |
+
|
79 |
+
|
80 |
+
class BaseModelOutput(ModelOutput):
|
81 |
+
"""
|
82 |
+
Base class for model's outputs, with potential hidden states and attentions.
|
83 |
+
Args:
|
84 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
85 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
86 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
87 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
88 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
89 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
90 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
91 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
92 |
+
sequence_length)`.
|
93 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
94 |
+
heads.
|
95 |
+
"""
|
96 |
+
|
97 |
+
last_hidden_state: torch.FloatTensor = None
|
98 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
99 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
100 |
+
position_embeddings: torch.FloatTensor = None
|
101 |
+
attention_mask: torch.BoolTensor = None
|
102 |
+
loss_moe: torch.FloatTensor = None
|
103 |
+
video_g: torch.FloatTensor = None
|
104 |
+
loads: torch.LongTensor = None
|
105 |
+
embeddings: torch.FloatTensor = None
|
106 |
+
|
107 |
+
|
108 |
+
# Copied from transformers.models.deberta.modeling_deberta.ContextPooler
|
109 |
+
class ContextPooler(nn.Module):
|
110 |
+
def __init__(self, config):
|
111 |
+
super().__init__()
|
112 |
+
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
|
113 |
+
self.dropout = StableDropout(config.pooler_dropout)
|
114 |
+
self.config = config
|
115 |
+
|
116 |
+
def forward(self, hidden_states):
|
117 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
118 |
+
# to the first token.
|
119 |
+
|
120 |
+
context_token = hidden_states[:, 0]
|
121 |
+
context_token = self.dropout(context_token)
|
122 |
+
pooled_output = self.dense(context_token)
|
123 |
+
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
|
124 |
+
return pooled_output
|
125 |
+
|
126 |
+
@property
|
127 |
+
def output_dim(self):
|
128 |
+
return self.config.hidden_size
|
129 |
+
|
130 |
+
|
131 |
+
# Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
|
132 |
+
class XSoftmax(torch.autograd.Function):
|
133 |
+
"""
|
134 |
+
Masked Softmax which is optimized for saving memory
|
135 |
+
|
136 |
+
Args:
|
137 |
+
input (:obj:`torch.tensor`): The input tensor that will apply softmax.
|
138 |
+
mask (:obj:`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
|
139 |
+
dim (int): The dimension that will apply softmax
|
140 |
+
|
141 |
+
Example::
|
142 |
+
|
143 |
+
import torch
|
144 |
+
from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
|
145 |
+
|
146 |
+
# Make a tensor
|
147 |
+
x = torch.randn([4,20,100])
|
148 |
+
|
149 |
+
# Create a mask
|
150 |
+
mask = (x>0).int()
|
151 |
+
|
152 |
+
y = XSoftmax.apply(x, mask, dim=-1)
|
153 |
+
"""
|
154 |
+
|
155 |
+
@staticmethod
|
156 |
+
def forward(self, input, mask, dim):
|
157 |
+
self.dim = dim
|
158 |
+
rmask = ~(mask.bool())
|
159 |
+
|
160 |
+
output = input.masked_fill(rmask, float("-inf"))
|
161 |
+
output = torch.softmax(output, self.dim)
|
162 |
+
output.masked_fill_(rmask, 0)
|
163 |
+
self.save_for_backward(output)
|
164 |
+
return output
|
165 |
+
|
166 |
+
@staticmethod
|
167 |
+
def backward(self, grad_output):
|
168 |
+
(output,) = self.saved_tensors
|
169 |
+
inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
|
170 |
+
return inputGrad, None, None
|
171 |
+
|
172 |
+
|
173 |
+
# Copied from transformers.models.deberta.modeling_deberta.DropoutContext
|
174 |
+
class DropoutContext(object):
|
175 |
+
def __init__(self):
|
176 |
+
self.dropout = 0
|
177 |
+
self.mask = None
|
178 |
+
self.scale = 1
|
179 |
+
self.reuse_mask = True
|
180 |
+
|
181 |
+
|
182 |
+
# Copied from transformers.models.deberta.modeling_deberta.get_mask
|
183 |
+
def get_mask(input, local_context):
|
184 |
+
if not isinstance(local_context, DropoutContext):
|
185 |
+
dropout = local_context
|
186 |
+
mask = None
|
187 |
+
else:
|
188 |
+
dropout = local_context.dropout
|
189 |
+
dropout *= local_context.scale
|
190 |
+
mask = local_context.mask if local_context.reuse_mask else None
|
191 |
+
|
192 |
+
if dropout > 0 and mask is None:
|
193 |
+
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).bool()
|
194 |
+
|
195 |
+
if isinstance(local_context, DropoutContext):
|
196 |
+
if local_context.mask is None:
|
197 |
+
local_context.mask = mask
|
198 |
+
|
199 |
+
return mask, dropout
|
200 |
+
|
201 |
+
|
202 |
+
# Copied from transformers.models.deberta.modeling_deberta.XDropout
|
203 |
+
class XDropout(torch.autograd.Function):
|
204 |
+
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
|
205 |
+
|
206 |
+
@staticmethod
|
207 |
+
def forward(ctx, input, local_ctx):
|
208 |
+
mask, dropout = get_mask(input, local_ctx)
|
209 |
+
ctx.scale = 1.0 / (1 - dropout)
|
210 |
+
if dropout > 0:
|
211 |
+
ctx.save_for_backward(mask)
|
212 |
+
return input.masked_fill(mask, 0) * ctx.scale
|
213 |
+
else:
|
214 |
+
return input
|
215 |
+
|
216 |
+
@staticmethod
|
217 |
+
def backward(ctx, grad_output):
|
218 |
+
if ctx.scale > 1:
|
219 |
+
(mask,) = ctx.saved_tensors
|
220 |
+
return grad_output.masked_fill(mask, 0) * ctx.scale, None
|
221 |
+
else:
|
222 |
+
return grad_output, None
|
223 |
+
|
224 |
+
|
225 |
+
# Copied from transformers.models.deberta.modeling_deberta.StableDropout
|
226 |
+
class StableDropout(nn.Module):
|
227 |
+
"""
|
228 |
+
Optimized dropout module for stabilizing the training
|
229 |
+
|
230 |
+
Args:
|
231 |
+
drop_prob (float): the dropout probabilities
|
232 |
+
"""
|
233 |
+
|
234 |
+
def __init__(self, drop_prob):
|
235 |
+
super().__init__()
|
236 |
+
self.drop_prob = drop_prob
|
237 |
+
self.count = 0
|
238 |
+
self.context_stack = None
|
239 |
+
|
240 |
+
def forward(self, x):
|
241 |
+
"""
|
242 |
+
Call the module
|
243 |
+
|
244 |
+
Args:
|
245 |
+
x (:obj:`torch.tensor`): The input tensor to apply dropout
|
246 |
+
"""
|
247 |
+
if self.training and self.drop_prob > 0:
|
248 |
+
return XDropout.apply(x, self.get_context())
|
249 |
+
return x
|
250 |
+
|
251 |
+
def clear_context(self):
|
252 |
+
self.count = 0
|
253 |
+
self.context_stack = None
|
254 |
+
|
255 |
+
def init_context(self, reuse_mask=True, scale=1):
|
256 |
+
if self.context_stack is None:
|
257 |
+
self.context_stack = []
|
258 |
+
self.count = 0
|
259 |
+
for c in self.context_stack:
|
260 |
+
c.reuse_mask = reuse_mask
|
261 |
+
c.scale = scale
|
262 |
+
|
263 |
+
def get_context(self):
|
264 |
+
if self.context_stack is not None:
|
265 |
+
if self.count >= len(self.context_stack):
|
266 |
+
self.context_stack.append(DropoutContext())
|
267 |
+
ctx = self.context_stack[self.count]
|
268 |
+
ctx.dropout = self.drop_prob
|
269 |
+
self.count += 1
|
270 |
+
return ctx
|
271 |
+
else:
|
272 |
+
return self.drop_prob
|
273 |
+
|
274 |
+
|
275 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm
|
276 |
+
class DebertaV2SelfOutput(nn.Module):
|
277 |
+
def __init__(self, config, ds_factor, dropout, add_moe, gating):
|
278 |
+
super().__init__()
|
279 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
280 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
281 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
282 |
+
self.add_moe = add_moe
|
283 |
+
if not self.add_moe and ds_factor:
|
284 |
+
self.adapter = Adapter(ds_factor, config.hidden_size, dropout=dropout)
|
285 |
+
else:
|
286 |
+
self.moe_layer = MoE(ds_factor = ds_factor, moe_input_size=config.hidden_size, dropout=dropout, num_experts=4, top_k=2, gating=gating)
|
287 |
+
|
288 |
+
def forward(self, hidden_states, input_tensor, temporal_factor = None, train_mode = True):
|
289 |
+
hidden_states = self.dense(hidden_states)
|
290 |
+
if not self.add_moe:
|
291 |
+
hidden_states = self.adapter(hidden_states)
|
292 |
+
else:
|
293 |
+
hidden_states, loss_moe, load = self.moe_layer(temporal_factor, hidden_states, train=train_mode)
|
294 |
+
hidden_states = self.dropout(hidden_states)
|
295 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
296 |
+
|
297 |
+
if not self.add_moe:
|
298 |
+
return hidden_states, None, None
|
299 |
+
|
300 |
+
return hidden_states, loss_moe, load
|
301 |
+
|
302 |
+
|
303 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2
|
304 |
+
class DebertaV2Attention(nn.Module):
|
305 |
+
def __init__(self, config, ds_factor, dropout, add_moe = False, gating='linear'):
|
306 |
+
super().__init__()
|
307 |
+
self.self = DisentangledSelfAttention(config)
|
308 |
+
self.output = DebertaV2SelfOutput(config, ds_factor, dropout, add_moe, gating)
|
309 |
+
self.config = config
|
310 |
+
|
311 |
+
def forward(
|
312 |
+
self,
|
313 |
+
hidden_states,
|
314 |
+
attention_mask,
|
315 |
+
return_att=False,
|
316 |
+
query_states=None,
|
317 |
+
relative_pos=None,
|
318 |
+
rel_embeddings=None,
|
319 |
+
temporal_factor=None,
|
320 |
+
train_mode=True
|
321 |
+
):
|
322 |
+
self_output = self.self(
|
323 |
+
hidden_states,
|
324 |
+
attention_mask,
|
325 |
+
return_att,
|
326 |
+
query_states=query_states,
|
327 |
+
relative_pos=relative_pos,
|
328 |
+
rel_embeddings=rel_embeddings,
|
329 |
+
)
|
330 |
+
if return_att:
|
331 |
+
self_output, att_matrix = self_output
|
332 |
+
if query_states is None:
|
333 |
+
query_states = hidden_states
|
334 |
+
attention_output, loss_moe, load = self.output(self_output, query_states, temporal_factor, train_mode)
|
335 |
+
|
336 |
+
if return_att:
|
337 |
+
return (attention_output, att_matrix, loss_moe)
|
338 |
+
else:
|
339 |
+
return attention_output, loss_moe, load
|
340 |
+
|
341 |
+
|
342 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2
|
343 |
+
class DebertaV2Intermediate(nn.Module):
|
344 |
+
def __init__(self, config):
|
345 |
+
super().__init__()
|
346 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
347 |
+
if isinstance(config.hidden_act, str):
|
348 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
349 |
+
else:
|
350 |
+
self.intermediate_act_fn = config.hidden_act
|
351 |
+
|
352 |
+
def forward(self, hidden_states):
|
353 |
+
hidden_states = self.dense(hidden_states)
|
354 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
355 |
+
return hidden_states
|
356 |
+
|
357 |
+
|
358 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm
|
359 |
+
class DebertaV2Output(nn.Module):
|
360 |
+
def __init__(self, config, ds_factor, dropout, add_moe = False, gating='linear',layer_id=0):
|
361 |
+
super().__init__()
|
362 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
363 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
364 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
365 |
+
self.config = config
|
366 |
+
self.ds_factor = ds_factor
|
367 |
+
self.add_moe = add_moe
|
368 |
+
if not self.add_moe and self.ds_factor:
|
369 |
+
self.adapter = Adapter(ds_factor, config.hidden_size, dropout=dropout)
|
370 |
+
elif self.add_moe:
|
371 |
+
self.moe_layer = MoE(ds_factor=ds_factor, moe_input_size=config.hidden_size, dropout=dropout, num_experts=4, top_k=1, gating=gating, layer_id=layer_id)
|
372 |
+
#self.adapter = Adapter(ds_factor, config.hidden_size, dropout=dropout)
|
373 |
+
|
374 |
+
def forward(self, hidden_states, input_tensor, temporal_factor, train_mode):
|
375 |
+
hidden_states = self.dense(hidden_states)
|
376 |
+
if not self.add_moe and self.ds_factor:
|
377 |
+
hidden_states = self.adapter(hidden_states)
|
378 |
+
elif self.add_moe:
|
379 |
+
hidden_states, loss_moe, load = self.moe_layer(temporal_factor, hidden_states, train=train_mode)
|
380 |
+
hidden_states = self.dropout(hidden_states)
|
381 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
382 |
+
|
383 |
+
if not self.add_moe:
|
384 |
+
return hidden_states, None, None
|
385 |
+
|
386 |
+
return hidden_states, loss_moe, load
|
387 |
+
|
388 |
+
|
389 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2
|
390 |
+
class DebertaV2Layer(nn.Module):
|
391 |
+
def __init__(
|
392 |
+
self,
|
393 |
+
config,
|
394 |
+
ds_factor_attn,
|
395 |
+
ds_factor_ff,
|
396 |
+
dropout,
|
397 |
+
layer_id,
|
398 |
+
):
|
399 |
+
super().__init__()
|
400 |
+
self.layer_id = layer_id
|
401 |
+
self.add_moe = False
|
402 |
+
|
403 |
+
#if layer_id >= config.num_hidden_layers - 2:
|
404 |
+
# self.add_moe = True
|
405 |
+
|
406 |
+
if layer_id < 2:
|
407 |
+
self.add_moe = True
|
408 |
+
|
409 |
+
self.attention = DebertaV2Attention(config, ds_factor_attn, dropout, False)
|
410 |
+
self.intermediate = DebertaV2Intermediate(config)
|
411 |
+
self.output = DebertaV2Output(config, ds_factor_ff, dropout, self.add_moe, gating="linear", layer_id = layer_id)
|
412 |
+
|
413 |
+
def forward(
|
414 |
+
self,
|
415 |
+
temporal_factor,
|
416 |
+
hidden_states,
|
417 |
+
attention_mask,
|
418 |
+
return_att=False,
|
419 |
+
query_states=None,
|
420 |
+
relative_pos=None,
|
421 |
+
rel_embeddings=None,
|
422 |
+
train_mode=True,
|
423 |
+
):
|
424 |
+
attention_output = self.attention(
|
425 |
+
hidden_states,
|
426 |
+
attention_mask,
|
427 |
+
return_att=return_att,
|
428 |
+
query_states=query_states,
|
429 |
+
relative_pos=relative_pos,
|
430 |
+
rel_embeddings=rel_embeddings,
|
431 |
+
temporal_factor=temporal_factor,
|
432 |
+
train_mode=train_mode
|
433 |
+
)
|
434 |
+
|
435 |
+
if return_att:
|
436 |
+
attention_output, att_matrix, loss_moe_attn = attention_output
|
437 |
+
else:
|
438 |
+
attention_output, loss_moe_attn, load = attention_output
|
439 |
+
intermediate_output = self.intermediate(attention_output)
|
440 |
+
layer_output, loss_moe_ffn, load = self.output(intermediate_output, attention_output, temporal_factor=temporal_factor, train_mode=train_mode)
|
441 |
+
|
442 |
+
loss_moe = loss_moe_attn if loss_moe_attn else loss_moe_ffn
|
443 |
+
if return_att:
|
444 |
+
return (layer_output, att_matrix)
|
445 |
+
|
446 |
+
|
447 |
+
return layer_output, loss_moe, load
|
448 |
+
|
449 |
+
|
450 |
+
|
451 |
+
class ConvLayer(nn.Module):
|
452 |
+
def __init__(self, config):
|
453 |
+
super().__init__()
|
454 |
+
kernel_size = getattr(config, "conv_kernel_size", 3)
|
455 |
+
groups = getattr(config, "conv_groups", 1)
|
456 |
+
self.conv_act = getattr(config, "conv_act", "tanh")
|
457 |
+
self.conv = nn.Conv1d(
|
458 |
+
config.hidden_size,
|
459 |
+
config.hidden_size,
|
460 |
+
kernel_size,
|
461 |
+
padding=(kernel_size - 1) // 2,
|
462 |
+
groups=groups,
|
463 |
+
)
|
464 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
465 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
466 |
+
self.config = config
|
467 |
+
|
468 |
+
def forward(self, hidden_states, residual_states, input_mask):
|
469 |
+
out = (
|
470 |
+
self.conv(hidden_states.permute(0, 2, 1).contiguous())
|
471 |
+
.permute(0, 2, 1)
|
472 |
+
.contiguous()
|
473 |
+
)
|
474 |
+
rmask = (1 - input_mask).bool()
|
475 |
+
out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
|
476 |
+
out = ACT2FN[self.conv_act](self.dropout(out))
|
477 |
+
|
478 |
+
layer_norm_input = residual_states + out
|
479 |
+
output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
|
480 |
+
|
481 |
+
if input_mask is None:
|
482 |
+
output_states = output
|
483 |
+
else:
|
484 |
+
if input_mask.dim() != layer_norm_input.dim():
|
485 |
+
if input_mask.dim() == 4:
|
486 |
+
input_mask = input_mask.squeeze(1).squeeze(1)
|
487 |
+
input_mask = input_mask.unsqueeze(2)
|
488 |
+
|
489 |
+
input_mask = input_mask.to(output.dtype)
|
490 |
+
output_states = output * input_mask
|
491 |
+
|
492 |
+
return output_states
|
493 |
+
|
494 |
+
|
495 |
+
class DebertaV2Encoder(nn.Module):
|
496 |
+
"""Modified BertEncoder with relative position bias support"""
|
497 |
+
|
498 |
+
def __init__(
|
499 |
+
self,
|
500 |
+
config,
|
501 |
+
ds_factor_attn,
|
502 |
+
ds_factor_ff,
|
503 |
+
dropout,
|
504 |
+
):
|
505 |
+
super().__init__()
|
506 |
+
|
507 |
+
self.layer = nn.ModuleList(
|
508 |
+
[
|
509 |
+
DebertaV2Layer(
|
510 |
+
config,
|
511 |
+
ds_factor_attn,
|
512 |
+
ds_factor_ff,
|
513 |
+
dropout,
|
514 |
+
_,
|
515 |
+
)
|
516 |
+
for _ in range(config.num_hidden_layers)
|
517 |
+
]
|
518 |
+
)
|
519 |
+
|
520 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
521 |
+
|
522 |
+
if self.relative_attention:
|
523 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
524 |
+
if self.max_relative_positions < 1:
|
525 |
+
self.max_relative_positions = config.max_position_embeddings
|
526 |
+
|
527 |
+
self.position_buckets = getattr(config, "position_buckets", -1)
|
528 |
+
pos_ebd_size = self.max_relative_positions * 2
|
529 |
+
|
530 |
+
if self.position_buckets > 0:
|
531 |
+
pos_ebd_size = self.position_buckets * 2
|
532 |
+
|
533 |
+
self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
|
534 |
+
|
535 |
+
self.norm_rel_ebd = [
|
536 |
+
x.strip()
|
537 |
+
for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")
|
538 |
+
]
|
539 |
+
|
540 |
+
if "layer_norm" in self.norm_rel_ebd:
|
541 |
+
self.LayerNorm = LayerNorm(
|
542 |
+
config.hidden_size, config.layer_norm_eps, elementwise_affine=True
|
543 |
+
)
|
544 |
+
|
545 |
+
self.conv = (
|
546 |
+
ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
|
547 |
+
)
|
548 |
+
|
549 |
+
def get_rel_embedding(self):
|
550 |
+
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
|
551 |
+
if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
|
552 |
+
rel_embeddings = self.LayerNorm(rel_embeddings)
|
553 |
+
return rel_embeddings
|
554 |
+
|
555 |
+
def get_attention_mask(self, attention_mask):
|
556 |
+
if attention_mask.dim() <= 2:
|
557 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
558 |
+
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(
|
559 |
+
-2
|
560 |
+
).unsqueeze(-1)
|
561 |
+
attention_mask = attention_mask.byte()
|
562 |
+
elif attention_mask.dim() == 3:
|
563 |
+
attention_mask = attention_mask.unsqueeze(1)
|
564 |
+
|
565 |
+
return attention_mask
|
566 |
+
|
567 |
+
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
|
568 |
+
if self.relative_attention and relative_pos is None:
|
569 |
+
q = (
|
570 |
+
query_states.size(-2)
|
571 |
+
if query_states is not None
|
572 |
+
else hidden_states.size(-2)
|
573 |
+
)
|
574 |
+
relative_pos = build_relative_position(
|
575 |
+
q,
|
576 |
+
hidden_states.size(-2),
|
577 |
+
bucket_size=self.position_buckets,
|
578 |
+
max_position=self.max_relative_positions,
|
579 |
+
)
|
580 |
+
return relative_pos
|
581 |
+
|
582 |
+
def forward(
|
583 |
+
self,
|
584 |
+
temporal_factor,
|
585 |
+
hidden_states,
|
586 |
+
attention_mask,
|
587 |
+
output_hidden_states=True,
|
588 |
+
output_attentions=False,
|
589 |
+
query_states=None,
|
590 |
+
relative_pos=None,
|
591 |
+
return_dict=True,
|
592 |
+
train_mode=True
|
593 |
+
):
|
594 |
+
if attention_mask.dim() <= 2:
|
595 |
+
input_mask = attention_mask
|
596 |
+
else:
|
597 |
+
input_mask = (attention_mask.sum(-2) > 0).byte()
|
598 |
+
attention_mask = self.get_attention_mask(attention_mask)
|
599 |
+
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
|
600 |
+
|
601 |
+
all_hidden_states = () if output_hidden_states else None
|
602 |
+
all_attentions = () if output_attentions else None
|
603 |
+
|
604 |
+
if isinstance(hidden_states, Sequence):
|
605 |
+
next_kv = hidden_states[0]
|
606 |
+
else:
|
607 |
+
next_kv = hidden_states
|
608 |
+
rel_embeddings = self.get_rel_embedding()
|
609 |
+
output_states = next_kv
|
610 |
+
|
611 |
+
loss_moe = 0
|
612 |
+
loads = []
|
613 |
+
embeddings = []
|
614 |
+
|
615 |
+
for i, layer_module in enumerate(self.layer):
|
616 |
+
|
617 |
+
if output_hidden_states:
|
618 |
+
all_hidden_states = all_hidden_states + (output_states,)
|
619 |
+
|
620 |
+
output_states, _, load = layer_module(
|
621 |
+
temporal_factor,
|
622 |
+
next_kv,
|
623 |
+
attention_mask,
|
624 |
+
output_attentions,
|
625 |
+
query_states=query_states,
|
626 |
+
relative_pos=relative_pos,
|
627 |
+
rel_embeddings=rel_embeddings,
|
628 |
+
train_mode=train_mode
|
629 |
+
)
|
630 |
+
if isinstance(load, torch.Tensor):
|
631 |
+
loads.append(load)
|
632 |
+
|
633 |
+
if _:
|
634 |
+
loss_moe = loss_moe + _
|
635 |
+
|
636 |
+
if output_attentions:
|
637 |
+
output_states, att_m = output_states
|
638 |
+
|
639 |
+
if i == 0 and self.conv is not None:
|
640 |
+
output_states = self.conv(hidden_states, output_states, input_mask)
|
641 |
+
|
642 |
+
if query_states is not None:
|
643 |
+
query_states = output_states
|
644 |
+
if isinstance(hidden_states, Sequence):
|
645 |
+
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
|
646 |
+
else:
|
647 |
+
next_kv = output_states
|
648 |
+
|
649 |
+
if output_attentions:
|
650 |
+
all_attentions = all_attentions + (att_m,)
|
651 |
+
|
652 |
+
if output_hidden_states:
|
653 |
+
all_hidden_states = all_hidden_states + (output_states,)
|
654 |
+
|
655 |
+
if not return_dict:
|
656 |
+
return tuple(
|
657 |
+
v
|
658 |
+
for v in [output_states, all_hidden_states, all_attentions]
|
659 |
+
if v is not None
|
660 |
+
)
|
661 |
+
|
662 |
+
if len(loads)>0:
|
663 |
+
loads = torch.stack(loads, dim = 0)
|
664 |
+
|
665 |
+
if len(embeddings) >0:
|
666 |
+
embeddings = torch.cat(embeddings, dim=0)
|
667 |
+
|
668 |
+
return BaseModelOutput(
|
669 |
+
last_hidden_state=output_states,
|
670 |
+
hidden_states=all_hidden_states,
|
671 |
+
attentions=all_attentions,
|
672 |
+
loss_moe=loss_moe,
|
673 |
+
loads=loads
|
674 |
+
)
|
675 |
+
|
676 |
+
|
677 |
+
def make_log_bucket_position(relative_pos, bucket_size, max_position):
|
678 |
+
sign = np.sign(relative_pos)
|
679 |
+
mid = bucket_size // 2
|
680 |
+
abs_pos = np.where(
|
681 |
+
(relative_pos < mid) & (relative_pos > -mid), mid - 1, np.abs(relative_pos)
|
682 |
+
)
|
683 |
+
log_pos = (
|
684 |
+
np.ceil(np.log(abs_pos / mid) / np.log((max_position - 1) / mid) * (mid - 1))
|
685 |
+
+ mid
|
686 |
+
)
|
687 |
+
bucket_pos = np.where(abs_pos <= mid, relative_pos, log_pos * sign).astype(np.int)
|
688 |
+
return bucket_pos
|
689 |
+
|
690 |
+
|
691 |
+
def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1):
|
692 |
+
"""
|
693 |
+
Build relative position according to the query and key
|
694 |
+
|
695 |
+
We assume the absolute position of query :math:`P_q` is range from (0, query_size) and the absolute position of key
|
696 |
+
:math:`P_k` is range from (0, key_size), The relative positions from query to key is :math:`R_{q \\rightarrow k} =
|
697 |
+
P_q - P_k`
|
698 |
+
|
699 |
+
Args:
|
700 |
+
query_size (int): the length of query
|
701 |
+
key_size (int): the length of key
|
702 |
+
bucket_size (int): the size of position bucket
|
703 |
+
max_position (int): the maximum allowed absolute position
|
704 |
+
|
705 |
+
Return:
|
706 |
+
:obj:`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
|
707 |
+
|
708 |
+
"""
|
709 |
+
q_ids = np.arange(0, query_size)
|
710 |
+
k_ids = np.arange(0, key_size)
|
711 |
+
rel_pos_ids = q_ids[:, None] - np.tile(k_ids, (q_ids.shape[0], 1))
|
712 |
+
if bucket_size > 0 and max_position > 0:
|
713 |
+
rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
|
714 |
+
rel_pos_ids = torch.tensor(rel_pos_ids, dtype=torch.long)
|
715 |
+
rel_pos_ids = rel_pos_ids[:query_size, :]
|
716 |
+
rel_pos_ids = rel_pos_ids.unsqueeze(0)
|
717 |
+
return rel_pos_ids
|
718 |
+
|
719 |
+
|
720 |
+
@torch.jit.script
|
721 |
+
# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
|
722 |
+
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
|
723 |
+
return c2p_pos.expand(
|
724 |
+
[
|
725 |
+
query_layer.size(0),
|
726 |
+
query_layer.size(1),
|
727 |
+
query_layer.size(2),
|
728 |
+
relative_pos.size(-1),
|
729 |
+
]
|
730 |
+
)
|
731 |
+
|
732 |
+
|
733 |
+
@torch.jit.script
|
734 |
+
# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
|
735 |
+
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
|
736 |
+
return c2p_pos.expand(
|
737 |
+
[
|
738 |
+
query_layer.size(0),
|
739 |
+
query_layer.size(1),
|
740 |
+
key_layer.size(-2),
|
741 |
+
key_layer.size(-2),
|
742 |
+
]
|
743 |
+
)
|
744 |
+
|
745 |
+
|
746 |
+
@torch.jit.script
|
747 |
+
# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
|
748 |
+
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
|
749 |
+
return pos_index.expand(
|
750 |
+
p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))
|
751 |
+
)
|
752 |
+
|
753 |
+
|
754 |
+
class DisentangledSelfAttention(nn.Module):
|
755 |
+
"""
|
756 |
+
Disentangled self-attention module
|
757 |
+
|
758 |
+
Parameters:
|
759 |
+
config (:obj:`DebertaV2Config`):
|
760 |
+
A model config class instance with the configuration to build a new model. The schema is similar to
|
761 |
+
`BertConfig`, for more details, please refer :class:`~transformers.DebertaV2Config`
|
762 |
+
|
763 |
+
"""
|
764 |
+
|
765 |
+
def __init__(self, config):
|
766 |
+
super().__init__()
|
767 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
768 |
+
raise ValueError(
|
769 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
770 |
+
f"heads ({config.num_attention_heads})"
|
771 |
+
)
|
772 |
+
self.num_attention_heads = config.num_attention_heads
|
773 |
+
_attention_head_size = config.hidden_size // config.num_attention_heads
|
774 |
+
self.attention_head_size = getattr(
|
775 |
+
config, "attention_head_size", _attention_head_size
|
776 |
+
)
|
777 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
778 |
+
self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
779 |
+
self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
780 |
+
self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
781 |
+
|
782 |
+
self.share_att_key = getattr(config, "share_att_key", False)
|
783 |
+
self.pos_att_type = (
|
784 |
+
config.pos_att_type if config.pos_att_type is not None else []
|
785 |
+
)
|
786 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
787 |
+
|
788 |
+
if self.relative_attention:
|
789 |
+
self.position_buckets = getattr(config, "position_buckets", -1)
|
790 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
791 |
+
if self.max_relative_positions < 1:
|
792 |
+
self.max_relative_positions = config.max_position_embeddings
|
793 |
+
self.pos_ebd_size = self.max_relative_positions
|
794 |
+
if self.position_buckets > 0:
|
795 |
+
self.pos_ebd_size = self.position_buckets
|
796 |
+
|
797 |
+
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
|
798 |
+
|
799 |
+
if not self.share_att_key:
|
800 |
+
if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
|
801 |
+
self.pos_key_proj = nn.Linear(
|
802 |
+
config.hidden_size, self.all_head_size, bias=True
|
803 |
+
)
|
804 |
+
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
|
805 |
+
self.pos_query_proj = nn.Linear(
|
806 |
+
config.hidden_size, self.all_head_size
|
807 |
+
)
|
808 |
+
|
809 |
+
self.dropout = StableDropout(config.attention_probs_dropout_prob)
|
810 |
+
|
811 |
+
def transpose_for_scores(self, x, attention_heads):
|
812 |
+
new_x_shape = x.size()[:-1] + (attention_heads, -1)
|
813 |
+
x = x.view(*new_x_shape)
|
814 |
+
return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
|
815 |
+
|
816 |
+
def forward(
|
817 |
+
self,
|
818 |
+
hidden_states,
|
819 |
+
attention_mask,
|
820 |
+
return_att=False,
|
821 |
+
query_states=None,
|
822 |
+
relative_pos=None,
|
823 |
+
rel_embeddings=None,
|
824 |
+
):
|
825 |
+
"""
|
826 |
+
Call the module
|
827 |
+
|
828 |
+
Args:
|
829 |
+
hidden_states (:obj:`torch.FloatTensor`):
|
830 |
+
Input states to the module usually the output from previous layer, it will be the Q,K and V in
|
831 |
+
`Attention(Q,K,V)`
|
832 |
+
|
833 |
+
attention_mask (:obj:`torch.ByteTensor`):
|
834 |
+
An attention mask matrix of shape [`B`, `N`, `N`] where `B` is the batch size, `N` is the maximum
|
835 |
+
sequence length in which element [i,j] = `1` means the `i` th token in the input can attend to the `j`
|
836 |
+
th token.
|
837 |
+
|
838 |
+
return_att (:obj:`bool`, optional):
|
839 |
+
Whether return the attention matrix.
|
840 |
+
|
841 |
+
query_states (:obj:`torch.FloatTensor`, optional):
|
842 |
+
The `Q` state in `Attention(Q,K,V)`.
|
843 |
+
|
844 |
+
relative_pos (:obj:`torch.LongTensor`):
|
845 |
+
The relative position encoding between the tokens in the sequence. It's of shape [`B`, `N`, `N`] with
|
846 |
+
values ranging in [`-max_relative_positions`, `max_relative_positions`].
|
847 |
+
|
848 |
+
rel_embeddings (:obj:`torch.FloatTensor`):
|
849 |
+
The embedding of relative distances. It's a tensor of shape [:math:`2 \\times
|
850 |
+
\\text{max_relative_positions}`, `hidden_size`].
|
851 |
+
|
852 |
+
|
853 |
+
"""
|
854 |
+
if query_states is None:
|
855 |
+
query_states = hidden_states
|
856 |
+
query_layer = self.transpose_for_scores(
|
857 |
+
self.query_proj(query_states), self.num_attention_heads
|
858 |
+
)
|
859 |
+
key_layer = self.transpose_for_scores(
|
860 |
+
self.key_proj(hidden_states), self.num_attention_heads
|
861 |
+
)
|
862 |
+
value_layer = self.transpose_for_scores(
|
863 |
+
self.value_proj(hidden_states), self.num_attention_heads
|
864 |
+
)
|
865 |
+
|
866 |
+
rel_att = None
|
867 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
868 |
+
scale_factor = 1
|
869 |
+
if "c2p" in self.pos_att_type:
|
870 |
+
scale_factor += 1
|
871 |
+
if "p2c" in self.pos_att_type:
|
872 |
+
scale_factor += 1
|
873 |
+
if "p2p" in self.pos_att_type:
|
874 |
+
scale_factor += 1
|
875 |
+
scale = math.sqrt(query_layer.size(-1) * scale_factor)
|
876 |
+
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)) / scale
|
877 |
+
if self.relative_attention:
|
878 |
+
rel_embeddings = self.pos_dropout(rel_embeddings)
|
879 |
+
rel_att = self.disentangled_attention_bias(
|
880 |
+
query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
|
881 |
+
)
|
882 |
+
|
883 |
+
if rel_att is not None:
|
884 |
+
attention_scores = attention_scores + rel_att
|
885 |
+
attention_scores = attention_scores
|
886 |
+
attention_scores = attention_scores.view(
|
887 |
+
-1,
|
888 |
+
self.num_attention_heads,
|
889 |
+
attention_scores.size(-2),
|
890 |
+
attention_scores.size(-1),
|
891 |
+
)
|
892 |
+
|
893 |
+
# bsz x height x length x dimension
|
894 |
+
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
|
895 |
+
attention_probs = self.dropout(attention_probs)
|
896 |
+
context_layer = torch.bmm(
|
897 |
+
attention_probs.view(
|
898 |
+
-1, attention_probs.size(-2), attention_probs.size(-1)
|
899 |
+
),
|
900 |
+
value_layer,
|
901 |
+
)
|
902 |
+
context_layer = (
|
903 |
+
context_layer.view(
|
904 |
+
-1,
|
905 |
+
self.num_attention_heads,
|
906 |
+
context_layer.size(-2),
|
907 |
+
context_layer.size(-1),
|
908 |
+
)
|
909 |
+
.permute(0, 2, 1, 3)
|
910 |
+
.contiguous()
|
911 |
+
)
|
912 |
+
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
|
913 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
914 |
+
if return_att:
|
915 |
+
return (context_layer, attention_probs)
|
916 |
+
else:
|
917 |
+
return context_layer
|
918 |
+
|
919 |
+
def disentangled_attention_bias(
|
920 |
+
self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
|
921 |
+
):
|
922 |
+
if relative_pos is None:
|
923 |
+
q = query_layer.size(-2)
|
924 |
+
relative_pos = build_relative_position(
|
925 |
+
q,
|
926 |
+
key_layer.size(-2),
|
927 |
+
bucket_size=self.position_buckets,
|
928 |
+
max_position=self.max_relative_positions,
|
929 |
+
)
|
930 |
+
if relative_pos.dim() == 2:
|
931 |
+
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
|
932 |
+
elif relative_pos.dim() == 3:
|
933 |
+
relative_pos = relative_pos.unsqueeze(1)
|
934 |
+
# bsz x height x query x key
|
935 |
+
elif relative_pos.dim() != 4:
|
936 |
+
raise ValueError(
|
937 |
+
f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}"
|
938 |
+
)
|
939 |
+
|
940 |
+
att_span = self.pos_ebd_size
|
941 |
+
relative_pos = relative_pos.long().to(query_layer.device)
|
942 |
+
|
943 |
+
rel_embeddings = rel_embeddings[
|
944 |
+
self.pos_ebd_size - att_span : self.pos_ebd_size + att_span, :
|
945 |
+
].unsqueeze(0)
|
946 |
+
if self.share_att_key:
|
947 |
+
pos_query_layer = self.transpose_for_scores(
|
948 |
+
self.query_proj(rel_embeddings), self.num_attention_heads
|
949 |
+
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
|
950 |
+
pos_key_layer = self.transpose_for_scores(
|
951 |
+
self.key_proj(rel_embeddings), self.num_attention_heads
|
952 |
+
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
|
953 |
+
else:
|
954 |
+
if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
|
955 |
+
pos_key_layer = self.transpose_for_scores(
|
956 |
+
self.pos_key_proj(rel_embeddings), self.num_attention_heads
|
957 |
+
).repeat(
|
958 |
+
query_layer.size(0) // self.num_attention_heads, 1, 1
|
959 |
+
) # .split(self.all_head_size, dim=-1)
|
960 |
+
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
|
961 |
+
pos_query_layer = self.transpose_for_scores(
|
962 |
+
self.pos_query_proj(rel_embeddings), self.num_attention_heads
|
963 |
+
).repeat(
|
964 |
+
query_layer.size(0) // self.num_attention_heads, 1, 1
|
965 |
+
) # .split(self.all_head_size, dim=-1)
|
966 |
+
|
967 |
+
score = 0
|
968 |
+
# content->position
|
969 |
+
if "c2p" in self.pos_att_type:
|
970 |
+
scale = math.sqrt(pos_key_layer.size(-1) * scale_factor)
|
971 |
+
c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
|
972 |
+
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
|
973 |
+
c2p_att = torch.gather(
|
974 |
+
c2p_att,
|
975 |
+
dim=-1,
|
976 |
+
index=c2p_pos.squeeze(0).expand(
|
977 |
+
[query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]
|
978 |
+
),
|
979 |
+
)
|
980 |
+
score += c2p_att / scale
|
981 |
+
|
982 |
+
# position->content
|
983 |
+
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
|
984 |
+
scale = math.sqrt(pos_query_layer.size(-1) * scale_factor)
|
985 |
+
if key_layer.size(-2) != query_layer.size(-2):
|
986 |
+
r_pos = build_relative_position(
|
987 |
+
key_layer.size(-2),
|
988 |
+
key_layer.size(-2),
|
989 |
+
bucket_size=self.position_buckets,
|
990 |
+
max_position=self.max_relative_positions,
|
991 |
+
).to(query_layer.device)
|
992 |
+
r_pos = r_pos.unsqueeze(0)
|
993 |
+
else:
|
994 |
+
r_pos = relative_pos
|
995 |
+
|
996 |
+
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
|
997 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
998 |
+
pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
|
999 |
+
|
1000 |
+
if "p2c" in self.pos_att_type:
|
1001 |
+
p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
|
1002 |
+
p2c_att = torch.gather(
|
1003 |
+
p2c_att,
|
1004 |
+
dim=-1,
|
1005 |
+
index=p2c_pos.squeeze(0).expand(
|
1006 |
+
[query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]
|
1007 |
+
),
|
1008 |
+
).transpose(-1, -2)
|
1009 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
1010 |
+
p2c_att = torch.gather(
|
1011 |
+
p2c_att,
|
1012 |
+
dim=-2,
|
1013 |
+
index=pos_index.expand(
|
1014 |
+
p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))
|
1015 |
+
),
|
1016 |
+
)
|
1017 |
+
score += p2c_att / scale
|
1018 |
+
|
1019 |
+
# position->position
|
1020 |
+
if "p2p" in self.pos_att_type:
|
1021 |
+
pos_query = pos_query_layer[:, :, att_span:, :]
|
1022 |
+
p2p_att = torch.matmul(pos_query, pos_key_layer.transpose(-1, -2))
|
1023 |
+
p2p_att = p2p_att.expand(query_layer.size()[:2] + p2p_att.size()[2:])
|
1024 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
1025 |
+
p2p_att = torch.gather(
|
1026 |
+
p2p_att,
|
1027 |
+
dim=-2,
|
1028 |
+
index=pos_index.expand(
|
1029 |
+
query_layer.size()[:2] + (pos_index.size(-2), p2p_att.size(-1))
|
1030 |
+
),
|
1031 |
+
)
|
1032 |
+
p2p_att = torch.gather(
|
1033 |
+
p2p_att,
|
1034 |
+
dim=-1,
|
1035 |
+
index=c2p_pos.expand(
|
1036 |
+
[
|
1037 |
+
query_layer.size(0),
|
1038 |
+
query_layer.size(1),
|
1039 |
+
query_layer.size(2),
|
1040 |
+
relative_pos.size(-1),
|
1041 |
+
]
|
1042 |
+
),
|
1043 |
+
)
|
1044 |
+
score += p2p_att
|
1045 |
+
|
1046 |
+
return score
|
1047 |
+
|
1048 |
+
|
1049 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm
|
1050 |
+
class DebertaV2Embeddings(nn.Module):
|
1051 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
1052 |
+
|
1053 |
+
def __init__(
|
1054 |
+
self,
|
1055 |
+
config,
|
1056 |
+
features_dim,
|
1057 |
+
add_video_feat=False,
|
1058 |
+
max_feats = 10
|
1059 |
+
):
|
1060 |
+
super().__init__()
|
1061 |
+
pad_token_id = getattr(config, "pad_token_id", 0)
|
1062 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
1063 |
+
self.word_embeddings = nn.Embedding(
|
1064 |
+
config.vocab_size, self.embedding_size, padding_idx=pad_token_id
|
1065 |
+
)
|
1066 |
+
|
1067 |
+
self.position_biased_input = getattr(config, "position_biased_input", True)
|
1068 |
+
self.position_embeddings = nn.Embedding(
|
1069 |
+
config.max_position_embeddings, self.embedding_size
|
1070 |
+
) # it is used for the decoder anyway
|
1071 |
+
|
1072 |
+
if config.type_vocab_size > 0:
|
1073 |
+
self.token_type_embeddings = nn.Embedding(
|
1074 |
+
config.type_vocab_size, self.embedding_size
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
if self.embedding_size != config.hidden_size:
|
1078 |
+
self.embed_proj = nn.Linear(
|
1079 |
+
self.embedding_size, config.hidden_size, bias=False
|
1080 |
+
)
|
1081 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
1082 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
1083 |
+
self.config = config
|
1084 |
+
|
1085 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
1086 |
+
self.register_buffer(
|
1087 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
|
1088 |
+
)
|
1089 |
+
|
1090 |
+
self.add_video_feat = add_video_feat
|
1091 |
+
self.features_dim = features_dim
|
1092 |
+
if self.features_dim:
|
1093 |
+
self.linear_video = nn.Linear(features_dim, config.hidden_size)
|
1094 |
+
if self.add_video_feat:
|
1095 |
+
self.evl = EVLTransformer(max_feats, decoder_num_layers=1,
|
1096 |
+
decoder_qkv_dim=768, add_video_feat=self.add_video_feat,
|
1097 |
+
add_mask=True)
|
1098 |
+
#self.evl = ConvNet()
|
1099 |
+
|
1100 |
+
def get_video_embedding(self, video, video_mask):
|
1101 |
+
|
1102 |
+
if self.add_video_feat:
|
1103 |
+
video_g = self.evl(video, video_mask)
|
1104 |
+
video_feat = self.linear_video(video)
|
1105 |
+
video_feat_l = torch.cat([video_g, video_feat], dim = 1)
|
1106 |
+
|
1107 |
+
else:
|
1108 |
+
video_feat_l = self.linear_video(video)
|
1109 |
+
video_feat_tmp = video_feat_l * video_mask.unsqueeze(-1)
|
1110 |
+
video_g = torch.sum(video_feat_tmp, dim = 1) / video_mask.sum(dim = 1, keepdim=True)
|
1111 |
+
return video_g, video_feat_l
|
1112 |
+
|
1113 |
+
def forward(
|
1114 |
+
self,
|
1115 |
+
input_ids=None,
|
1116 |
+
token_type_ids=None,
|
1117 |
+
position_ids=None,
|
1118 |
+
mask=None,
|
1119 |
+
inputs_embeds=None,
|
1120 |
+
video=None,
|
1121 |
+
video_mask=None
|
1122 |
+
):
|
1123 |
+
if input_ids is not None:
|
1124 |
+
input_shape = input_ids.size()
|
1125 |
+
else:
|
1126 |
+
input_shape = inputs_embeds.size()[:-1]
|
1127 |
+
|
1128 |
+
if inputs_embeds is None:
|
1129 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
1130 |
+
if self.features_dim and video is not None:
|
1131 |
+
video_global, video = self.get_video_embedding(video, video_mask)
|
1132 |
+
inputs_embeds = torch.cat([video, inputs_embeds], 1)
|
1133 |
+
input_shape = inputs_embeds[:, :, 0].shape
|
1134 |
+
|
1135 |
+
seq_length = input_shape[1]
|
1136 |
+
|
1137 |
+
if position_ids is None:
|
1138 |
+
position_ids = self.position_ids[:, :seq_length]
|
1139 |
+
|
1140 |
+
if token_type_ids is None:
|
1141 |
+
token_type_ids = torch.zeros(
|
1142 |
+
input_shape, dtype=torch.long, device=self.position_ids.device
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
if self.position_embeddings is not None:
|
1146 |
+
position_embeddings = self.position_embeddings(position_ids.long())
|
1147 |
+
else:
|
1148 |
+
position_embeddings = torch.zeros_like(inputs_embeds)
|
1149 |
+
|
1150 |
+
embeddings = inputs_embeds
|
1151 |
+
if self.position_biased_input:
|
1152 |
+
embeddings = embeddings + position_embeddings
|
1153 |
+
if self.config.type_vocab_size > 0:
|
1154 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
1155 |
+
embeddings = embeddings + token_type_embeddings
|
1156 |
+
|
1157 |
+
if self.embedding_size != self.config.hidden_size:
|
1158 |
+
embeddings = self.embed_proj(embeddings)
|
1159 |
+
|
1160 |
+
embeddings = self.LayerNorm(embeddings)
|
1161 |
+
|
1162 |
+
if mask is not None:
|
1163 |
+
if mask.dim() != embeddings.dim():
|
1164 |
+
if mask.dim() == 4:
|
1165 |
+
mask = mask.squeeze(1).squeeze(1)
|
1166 |
+
mask = mask.unsqueeze(2)
|
1167 |
+
mask = mask.to(embeddings.dtype)
|
1168 |
+
|
1169 |
+
embeddings = embeddings * mask
|
1170 |
+
|
1171 |
+
embeddings = self.dropout(embeddings)
|
1172 |
+
return {
|
1173 |
+
"embeddings": embeddings,
|
1174 |
+
"position_embeddings": position_embeddings,
|
1175 |
+
"video_global": video_global
|
1176 |
+
}
|
1177 |
+
|
1178 |
+
|
1179 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2
|
1180 |
+
|
1181 |
+
|
1182 |
+
class DebertaV2PreTrainedModel(PreTrainedModel):
|
1183 |
+
"""
|
1184 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1185 |
+
models.
|
1186 |
+
"""
|
1187 |
+
|
1188 |
+
config_class = DebertaV2Config
|
1189 |
+
base_model_prefix = "deberta"
|
1190 |
+
_keys_to_ignore_on_load_missing = ["position_ids"]
|
1191 |
+
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
|
1192 |
+
|
1193 |
+
def __init__(self, config):
|
1194 |
+
super().__init__(config)
|
1195 |
+
self._register_load_state_dict_pre_hook(self._pre_load_hook)
|
1196 |
+
|
1197 |
+
def _init_weights(self, module):
|
1198 |
+
"""Initialize the weights."""
|
1199 |
+
if isinstance(module, nn.Linear):
|
1200 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
1201 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
1202 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
1203 |
+
if module.bias is not None:
|
1204 |
+
module.bias.data.zero_()
|
1205 |
+
elif isinstance(module, nn.Embedding):
|
1206 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
1207 |
+
if module.padding_idx is not None:
|
1208 |
+
module.weight.data[module.padding_idx].zero_()
|
1209 |
+
|
1210 |
+
def _pre_load_hook(
|
1211 |
+
self,
|
1212 |
+
state_dict,
|
1213 |
+
prefix,
|
1214 |
+
local_metadata,
|
1215 |
+
strict,
|
1216 |
+
missing_keys,
|
1217 |
+
unexpected_keys,
|
1218 |
+
error_msgs,
|
1219 |
+
):
|
1220 |
+
"""
|
1221 |
+
Removes the classifier if it doesn't have the correct number of labels.
|
1222 |
+
"""
|
1223 |
+
self_state = self.state_dict()
|
1224 |
+
if (
|
1225 |
+
("classifier.weight" in self_state)
|
1226 |
+
and ("classifier.weight" in state_dict)
|
1227 |
+
and self_state["classifier.weight"].size()
|
1228 |
+
!= state_dict["classifier.weight"].size()
|
1229 |
+
):
|
1230 |
+
print(
|
1231 |
+
f"The checkpoint classifier head has a shape {state_dict['classifier.weight'].size()} and this model "
|
1232 |
+
f"classifier head has a shape {self_state['classifier.weight'].size()}. Ignoring the checkpoint "
|
1233 |
+
f"weights. You should train your model on new data."
|
1234 |
+
)
|
1235 |
+
del state_dict["classifier.weight"]
|
1236 |
+
if "classifier.bias" in state_dict:
|
1237 |
+
del state_dict["classifier.bias"]
|
1238 |
+
|
1239 |
+
|
1240 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2
|
1241 |
+
class DebertaV2Model(DebertaV2PreTrainedModel):
|
1242 |
+
def __init__(
|
1243 |
+
self,
|
1244 |
+
config,
|
1245 |
+
max_feats=10,
|
1246 |
+
features_dim=768,
|
1247 |
+
freeze_lm=False,
|
1248 |
+
ds_factor_attn=8,
|
1249 |
+
ds_factor_ff=8,
|
1250 |
+
ft_ln=False,
|
1251 |
+
dropout=0.1,
|
1252 |
+
add_video_feat = False,
|
1253 |
+
freeze_ad=False,
|
1254 |
+
):
|
1255 |
+
super().__init__(config)
|
1256 |
+
|
1257 |
+
self.embeddings = DebertaV2Embeddings(
|
1258 |
+
config,
|
1259 |
+
features_dim,
|
1260 |
+
add_video_feat,
|
1261 |
+
max_feats
|
1262 |
+
)
|
1263 |
+
self.encoder = DebertaV2Encoder(
|
1264 |
+
config,
|
1265 |
+
ds_factor_attn,
|
1266 |
+
ds_factor_ff,
|
1267 |
+
dropout,
|
1268 |
+
)
|
1269 |
+
self.z_steps = 0
|
1270 |
+
self.config = config
|
1271 |
+
|
1272 |
+
self.features_dim = features_dim
|
1273 |
+
self.max_feats = max_feats
|
1274 |
+
if freeze_lm:
|
1275 |
+
for n, p in self.named_parameters():
|
1276 |
+
#if (not "linear_video" in n) and (not "adapter" in n):
|
1277 |
+
# if ft_ln and "LayerNorm" in n:
|
1278 |
+
# continue
|
1279 |
+
# else:
|
1280 |
+
# p.requires_grad_(False)
|
1281 |
+
if not freeze_ad:
|
1282 |
+
if (not "evl" in n) and (not "linear_video" in n) and (not "adapter" in n) and (not "moe" in n):
|
1283 |
+
if ft_ln and "LayerNorm" in n:
|
1284 |
+
continue
|
1285 |
+
else:
|
1286 |
+
p.requires_grad_(False)
|
1287 |
+
|
1288 |
+
else:
|
1289 |
+
if not "evl" in n:
|
1290 |
+
p.requires_grad_(False)
|
1291 |
+
|
1292 |
+
|
1293 |
+
|
1294 |
+
self.init_weights()
|
1295 |
+
|
1296 |
+
def get_input_embeddings(self):
|
1297 |
+
return self.embeddings.word_embeddings
|
1298 |
+
|
1299 |
+
def set_input_embeddings(self, new_embeddings):
|
1300 |
+
self.embeddings.word_embeddings = new_embeddings
|
1301 |
+
|
1302 |
+
def _prune_heads(self, heads_to_prune):
|
1303 |
+
"""
|
1304 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1305 |
+
class PreTrainedModel
|
1306 |
+
"""
|
1307 |
+
raise NotImplementedError(
|
1308 |
+
"The prune function is not implemented in DeBERTa model."
|
1309 |
+
)
|
1310 |
+
|
1311 |
+
def forward(
|
1312 |
+
self,
|
1313 |
+
input_ids=None,
|
1314 |
+
attention_mask=None,
|
1315 |
+
token_type_ids=None,
|
1316 |
+
position_ids=None,
|
1317 |
+
inputs_embeds=None,
|
1318 |
+
output_attentions=None,
|
1319 |
+
output_hidden_states=None,
|
1320 |
+
return_dict=None,
|
1321 |
+
video=None,
|
1322 |
+
video_mask=None,
|
1323 |
+
train_mode = True
|
1324 |
+
):
|
1325 |
+
output_attentions = (
|
1326 |
+
output_attentions
|
1327 |
+
if output_attentions is not None
|
1328 |
+
else self.config.output_attentions
|
1329 |
+
)
|
1330 |
+
output_hidden_states = (
|
1331 |
+
output_hidden_states
|
1332 |
+
if output_hidden_states is not None
|
1333 |
+
else self.config.output_hidden_states
|
1334 |
+
)
|
1335 |
+
return_dict = (
|
1336 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1337 |
+
)
|
1338 |
+
|
1339 |
+
if input_ids is not None and inputs_embeds is not None:
|
1340 |
+
raise ValueError(
|
1341 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
1342 |
+
)
|
1343 |
+
elif input_ids is not None:
|
1344 |
+
input_shape = input_ids.size()
|
1345 |
+
elif inputs_embeds is not None:
|
1346 |
+
input_shape = inputs_embeds.size()[:-1]
|
1347 |
+
else:
|
1348 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1349 |
+
|
1350 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1351 |
+
|
1352 |
+
if attention_mask is None:
|
1353 |
+
attention_mask = torch.ones(input_shape, device=device)
|
1354 |
+
|
1355 |
+
if self.features_dim and video is not None:
|
1356 |
+
if video_mask is None:
|
1357 |
+
video_shape = video[:, :, 0].size()
|
1358 |
+
video_mask = torch.ones(video_shape, device=device)
|
1359 |
+
attention_mask = torch.cat([video_mask, attention_mask], 1)
|
1360 |
+
input_shape = attention_mask.size()
|
1361 |
+
|
1362 |
+
if token_type_ids is None:
|
1363 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1364 |
+
|
1365 |
+
embedding_output = self.embeddings(
|
1366 |
+
input_ids=input_ids,
|
1367 |
+
token_type_ids=token_type_ids,
|
1368 |
+
position_ids=position_ids,
|
1369 |
+
mask=attention_mask,
|
1370 |
+
inputs_embeds=inputs_embeds,
|
1371 |
+
video=video,
|
1372 |
+
video_mask=video_mask[:, 1:] if video_mask.shape[1] != video.shape[1] else video_mask
|
1373 |
+
)
|
1374 |
+
embedding_output, position_embeddings, video_g = (
|
1375 |
+
embedding_output["embeddings"],
|
1376 |
+
embedding_output["position_embeddings"],
|
1377 |
+
embedding_output["video_global"]
|
1378 |
+
)
|
1379 |
+
|
1380 |
+
video_g = video_g.squeeze()
|
1381 |
+
encoder_outputs = self.encoder(
|
1382 |
+
video_g,
|
1383 |
+
embedding_output,
|
1384 |
+
attention_mask,
|
1385 |
+
output_hidden_states=True,
|
1386 |
+
output_attentions=output_attentions,
|
1387 |
+
return_dict=return_dict,
|
1388 |
+
train_mode=train_mode
|
1389 |
+
)
|
1390 |
+
encoded_layers = encoder_outputs[1]
|
1391 |
+
loss_moe =encoder_outputs.loss_moe
|
1392 |
+
|
1393 |
+
if self.z_steps > 1:
|
1394 |
+
hidden_states = encoded_layers[-2]
|
1395 |
+
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
|
1396 |
+
query_states = encoded_layers[-1]
|
1397 |
+
rel_embeddings = self.encoder.get_rel_embedding()
|
1398 |
+
attention_mask = self.encoder.get_attention_mask(attention_mask)
|
1399 |
+
rel_pos = self.encoder.get_rel_pos(embedding_output)
|
1400 |
+
for layer in layers[1:]:
|
1401 |
+
query_states = layer(
|
1402 |
+
hidden_states,
|
1403 |
+
attention_mask,
|
1404 |
+
return_att=False,
|
1405 |
+
query_states=query_states,
|
1406 |
+
relative_pos=rel_pos,
|
1407 |
+
rel_embeddings=rel_embeddings,
|
1408 |
+
)
|
1409 |
+
encoded_layers.append(query_states)
|
1410 |
+
|
1411 |
+
sequence_output = encoded_layers[-1]
|
1412 |
+
|
1413 |
+
if not return_dict:
|
1414 |
+
return (sequence_output,) + encoder_outputs[
|
1415 |
+
(1 if output_hidden_states else 2) :
|
1416 |
+
]
|
1417 |
+
|
1418 |
+
return BaseModelOutput(
|
1419 |
+
last_hidden_state=sequence_output,
|
1420 |
+
hidden_states=encoder_outputs.hidden_states
|
1421 |
+
if output_hidden_states
|
1422 |
+
else None,
|
1423 |
+
attentions=encoder_outputs.attentions,
|
1424 |
+
position_embeddings=position_embeddings,
|
1425 |
+
attention_mask=attention_mask,
|
1426 |
+
video_g=video_g,
|
1427 |
+
loss_moe = loss_moe,
|
1428 |
+
loads=encoder_outputs.loads
|
1429 |
+
)
|
1430 |
+
|
1431 |
+
|
1432 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM with Deberta->DebertaV2
|
1433 |
+
class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
|
1434 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1435 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1436 |
+
|
1437 |
+
def __init__(
|
1438 |
+
self,
|
1439 |
+
config,
|
1440 |
+
max_feats=10,
|
1441 |
+
features_dim=768,
|
1442 |
+
freeze_lm=True,
|
1443 |
+
freeze_mlm=True,
|
1444 |
+
ds_factor_attn=8,
|
1445 |
+
ds_factor_ff=8,
|
1446 |
+
ft_ln=True,
|
1447 |
+
dropout=0.1,
|
1448 |
+
n_ans=0,
|
1449 |
+
freeze_last=True,
|
1450 |
+
add_video_feat = False,
|
1451 |
+
freeze_ad=False,
|
1452 |
+
add_temporal_trans = False
|
1453 |
+
):
|
1454 |
+
"""
|
1455 |
+
:param config: BiLM configuration
|
1456 |
+
:param max_feats: maximum number of frames used by the model
|
1457 |
+
:param features_dim: embedding dimension of the visual features, set = 0 for text-only mode
|
1458 |
+
:param freeze_lm: whether to freeze or not the language model (Transformer encoder + token embedder)
|
1459 |
+
:param freeze_mlm: whether to freeze or not the MLM head
|
1460 |
+
:param ds_factor_attn: downsampling factor for the adapter after self-attention, no adapter if set to 0
|
1461 |
+
:param ds_factor_ff: downsampling factor for the adapter after feed-forward, no adapter if set to 0
|
1462 |
+
:param ft_ln: whether to finetune or not the normalization layers
|
1463 |
+
:param dropout: dropout probability in the adapter
|
1464 |
+
:param n_ans: number of answers in the downstream vocabulary, set = 0 during cross-modal training
|
1465 |
+
:param freeze_last: whether to freeze or not the answer embedding module
|
1466 |
+
"""
|
1467 |
+
super().__init__(config)
|
1468 |
+
|
1469 |
+
# self.clip, _ = clip.load("ViT-L/14")
|
1470 |
+
# for p in self.clip.parameters():
|
1471 |
+
# p.requires_grad_(False)
|
1472 |
+
|
1473 |
+
self.deberta = DebertaV2Model(
|
1474 |
+
config,
|
1475 |
+
max_feats,
|
1476 |
+
features_dim,
|
1477 |
+
freeze_lm,
|
1478 |
+
ds_factor_attn,
|
1479 |
+
ds_factor_ff,
|
1480 |
+
ft_ln,
|
1481 |
+
dropout,
|
1482 |
+
add_video_feat,
|
1483 |
+
freeze_ad
|
1484 |
+
)
|
1485 |
+
|
1486 |
+
self.add_video_feat = add_video_feat
|
1487 |
+
self.lm_predictions = DebertaV2OnlyMLMHead(config)
|
1488 |
+
self.features_dim = features_dim
|
1489 |
+
if freeze_mlm:
|
1490 |
+
for n, p in self.lm_predictions.named_parameters():
|
1491 |
+
if ft_ln and "LayerNorm" in n:
|
1492 |
+
continue
|
1493 |
+
else:
|
1494 |
+
p.requires_grad_(False)
|
1495 |
+
|
1496 |
+
self.init_weights()
|
1497 |
+
self.n_ans = n_ans
|
1498 |
+
if n_ans:
|
1499 |
+
self.answer_embeddings = nn.Embedding(
|
1500 |
+
n_ans, self.deberta.embeddings.embedding_size
|
1501 |
+
)
|
1502 |
+
self.answer_bias = nn.Parameter(torch.zeros(n_ans))
|
1503 |
+
if freeze_last:
|
1504 |
+
self.answer_embeddings.requires_grad_(False)
|
1505 |
+
self.answer_bias.requires_grad_(False)
|
1506 |
+
|
1507 |
+
def set_answer_embeddings(self, a2tok, freeze_last=True):
|
1508 |
+
a2v = self.deberta.embeddings.word_embeddings(a2tok) # answer embeddings (ans_vocab_num, 1, dim)
|
1509 |
+
pad_token_id = getattr(self.config, "pad_token_id", 0)
|
1510 |
+
sum_tokens = (a2tok != pad_token_id).sum(1, keepdims=True) # n_ans (1000, 1) n_tokens
|
1511 |
+
if len(a2v) != self.n_ans: # reinitialize the answer embeddings
|
1512 |
+
assert not self.training
|
1513 |
+
self.n_ans = len(a2v)
|
1514 |
+
self.answer_embeddings = nn.Embedding(
|
1515 |
+
self.n_ans, self.deberta.embeddings.embedding_size
|
1516 |
+
).to(self.device)
|
1517 |
+
self.answer_bias.requires_grad = False
|
1518 |
+
self.answer_bias.resize_(self.n_ans)
|
1519 |
+
self.answer_embeddings.weight.data = torch.div(
|
1520 |
+
(a2v * (a2tok != pad_token_id).float()[:, :, None]).sum(1),
|
1521 |
+
sum_tokens.clamp(min=1),
|
1522 |
+
) # n_ans
|
1523 |
+
a2b = self.lm_predictions.lm_head.bias[a2tok]
|
1524 |
+
self.answer_bias.weight = torch.div(
|
1525 |
+
(a2b * (a2tok != pad_token_id).float()).sum(1), sum_tokens.clamp(min=1)
|
1526 |
+
)
|
1527 |
+
if freeze_last:
|
1528 |
+
self.answer_embeddings.requires_grad_(False)
|
1529 |
+
self.answer_bias.requires_grad_(False)
|
1530 |
+
|
1531 |
+
def emd_context_layer(self, encoder_layers, z_states, attention_mask, encoder, temporal_factor, train_mode):
|
1532 |
+
if attention_mask.dim() <= 2:
|
1533 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
1534 |
+
att_mask = extended_attention_mask.byte()
|
1535 |
+
attention_mask = att_mask * att_mask.squeeze(-2).unsqueeze(-1)
|
1536 |
+
elif attention_mask.dim() == 3:
|
1537 |
+
attention_mask = attention_mask.unsqueeze(1)
|
1538 |
+
hidden_states = encoder_layers[-2]
|
1539 |
+
if not self.config.position_biased_input:
|
1540 |
+
layers = [encoder.layer[-1] for _ in range(2)]
|
1541 |
+
z_states = z_states + hidden_states
|
1542 |
+
query_states = z_states
|
1543 |
+
query_mask = attention_mask
|
1544 |
+
outputs = []
|
1545 |
+
rel_embeddings = encoder.get_rel_embedding()
|
1546 |
+
|
1547 |
+
for layer in layers:
|
1548 |
+
output = layer(
|
1549 |
+
temporal_factor,
|
1550 |
+
hidden_states,
|
1551 |
+
query_mask,
|
1552 |
+
return_att=False,
|
1553 |
+
query_states=query_states,
|
1554 |
+
relative_pos=None,
|
1555 |
+
rel_embeddings=rel_embeddings,
|
1556 |
+
train_mode=train_mode
|
1557 |
+
)
|
1558 |
+
query_states = output[0]
|
1559 |
+
outputs.append(query_states)
|
1560 |
+
else:
|
1561 |
+
outputs = [encoder_layers[-1]]
|
1562 |
+
|
1563 |
+
return outputs
|
1564 |
+
|
1565 |
+
def forward(
|
1566 |
+
self,
|
1567 |
+
input_ids=None,
|
1568 |
+
attention_mask=None,
|
1569 |
+
labels=None,
|
1570 |
+
video=None,
|
1571 |
+
video_mask=None,
|
1572 |
+
train_mode=False,
|
1573 |
+
):
|
1574 |
+
token_type_ids=None
|
1575 |
+
position_ids=None
|
1576 |
+
inputs_embeds=None
|
1577 |
+
output_attentions=None
|
1578 |
+
return_dict=None
|
1579 |
+
mlm=False
|
1580 |
+
r"""
|
1581 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1582 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1583 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1584 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1585 |
+
"""
|
1586 |
+
|
1587 |
+
return_dict = (
|
1588 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1589 |
+
)
|
1590 |
+
|
1591 |
+
|
1592 |
+
# rand_video = torch.randn(1,30,3,224,224).cuda()
|
1593 |
+
# video = self.clip.encode_image(rand_video.squeeze()).unsqueeze(0)
|
1594 |
+
# video = video.to(torch.float)
|
1595 |
+
|
1596 |
+
outputs = self.deberta(
|
1597 |
+
input_ids,
|
1598 |
+
attention_mask=attention_mask,
|
1599 |
+
token_type_ids=token_type_ids,
|
1600 |
+
position_ids=position_ids,
|
1601 |
+
inputs_embeds=inputs_embeds,
|
1602 |
+
output_attentions=output_attentions,
|
1603 |
+
output_hidden_states=True,
|
1604 |
+
return_dict=return_dict,
|
1605 |
+
video=video,
|
1606 |
+
video_mask=video_mask,
|
1607 |
+
train_mode = train_mode
|
1608 |
+
)
|
1609 |
+
|
1610 |
+
loss_moe = outputs['loss_moe']
|
1611 |
+
|
1612 |
+
if labels is not None:
|
1613 |
+
if (
|
1614 |
+
self.features_dim and video is not None
|
1615 |
+
): # ignore the label predictions for visual tokens
|
1616 |
+
video_shape = video[:, :, 0].size()
|
1617 |
+
# add video_general
|
1618 |
+
if self.add_video_feat:
|
1619 |
+
video_shape = (video_shape[0], video_shape[1] + 1)
|
1620 |
+
|
1621 |
+
video_labels = torch.tensor(
|
1622 |
+
[[-100] * video_shape[1]] * video_shape[0],
|
1623 |
+
dtype=torch.long,
|
1624 |
+
device=labels.device,
|
1625 |
+
)
|
1626 |
+
labels = torch.cat([video_labels, labels], 1)
|
1627 |
+
|
1628 |
+
# sequence_output = outputs[0]
|
1629 |
+
modified = self.emd_context_layer(
|
1630 |
+
encoder_layers=outputs["hidden_states"],
|
1631 |
+
z_states=outputs["position_embeddings"].repeat(
|
1632 |
+
input_ids.shape[0] // len(outputs["position_embeddings"]), 1, 1
|
1633 |
+
),
|
1634 |
+
attention_mask=outputs["attention_mask"],
|
1635 |
+
encoder=self.deberta.encoder,
|
1636 |
+
temporal_factor=outputs["video_g"],
|
1637 |
+
train_mode = train_mode
|
1638 |
+
)
|
1639 |
+
bias = None
|
1640 |
+
if self.n_ans and (not mlm): # downstream mode
|
1641 |
+
embeddings = self.answer_embeddings.weight
|
1642 |
+
bias = self.answer_bias
|
1643 |
+
else:
|
1644 |
+
embeddings = self.deberta.embeddings.word_embeddings.weight
|
1645 |
+
prediction_scores = self.lm_predictions(modified[-1], embeddings, bias)
|
1646 |
+
|
1647 |
+
masked_lm_loss = None
|
1648 |
+
if labels is not None:
|
1649 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1650 |
+
|
1651 |
+
masked_lm_loss = loss_fct(
|
1652 |
+
prediction_scores.view(-1, self.config.vocab_size),
|
1653 |
+
labels.view(-1), # labels[labels > 0].view(-1)
|
1654 |
+
)
|
1655 |
+
|
1656 |
+
if not return_dict:
|
1657 |
+
output = (prediction_scores,) + outputs[1:]
|
1658 |
+
return (
|
1659 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1660 |
+
)
|
1661 |
+
|
1662 |
+
return MaskedLMOutput(
|
1663 |
+
loss_moe=loss_moe,
|
1664 |
+
loss=masked_lm_loss,
|
1665 |
+
logits=prediction_scores,
|
1666 |
+
hidden_states=outputs.hidden_states,
|
1667 |
+
attentions=outputs.attentions,
|
1668 |
+
loads=outputs.loads,
|
1669 |
+
embeddings=outputs.video_g
|
1670 |
+
)
|
1671 |
+
|
1672 |
+
|
1673 |
+
# copied from transformers.models.bert.BertPredictionHeadTransform with bert -> deberta
|
1674 |
+
class DebertaV2PredictionHeadTransform(nn.Module):
|
1675 |
+
def __init__(self, config):
|
1676 |
+
super().__init__()
|
1677 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1678 |
+
if isinstance(config.hidden_act, str):
|
1679 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
1680 |
+
else:
|
1681 |
+
self.transform_act_fn = config.hidden_act
|
1682 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1683 |
+
|
1684 |
+
def forward(self, hidden_states):
|
1685 |
+
hidden_states = self.dense(hidden_states)
|
1686 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
1687 |
+
hidden_states = self.LayerNorm(hidden_states)
|
1688 |
+
return hidden_states
|
1689 |
+
|
1690 |
+
|
1691 |
+
# copied from transformers.models.bert.BertLMPredictionHead with bert -> deberta
|
1692 |
+
class DebertaV2LMPredictionHead(nn.Module):
|
1693 |
+
def __init__(self, config):
|
1694 |
+
super().__init__()
|
1695 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1696 |
+
if isinstance(config.hidden_act, str):
|
1697 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
1698 |
+
else:
|
1699 |
+
self.transform_act_fn = config.hidden_act
|
1700 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1701 |
+
|
1702 |
+
# The output weights are the same as the input embeddings, but there is
|
1703 |
+
# an output-only bias for each token.
|
1704 |
+
|
1705 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1706 |
+
|
1707 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
1708 |
+
|
1709 |
+
def forward(self, hidden_states, embedding_weight, bias=None):
|
1710 |
+
hidden_states = self.dense(hidden_states)
|
1711 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
1712 |
+
hidden_states = self.LayerNorm(hidden_states)
|
1713 |
+
if bias is not None:
|
1714 |
+
logits = (
|
1715 |
+
torch.matmul(hidden_states, embedding_weight.t().to(hidden_states))
|
1716 |
+
+ bias
|
1717 |
+
)
|
1718 |
+
else:
|
1719 |
+
logits = (
|
1720 |
+
torch.matmul(hidden_states, embedding_weight.t().to(hidden_states))
|
1721 |
+
+ self.bias
|
1722 |
+
)
|
1723 |
+
return logits
|
1724 |
+
|
1725 |
+
|
1726 |
+
# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
|
1727 |
+
class DebertaV2OnlyMLMHead(nn.Module):
|
1728 |
+
def __init__(self, config):
|
1729 |
+
super().__init__()
|
1730 |
+
# self.predictions = DebertaV2LMPredictionHead(config)
|
1731 |
+
self.lm_head = DebertaV2LMPredictionHead(config)
|
1732 |
+
|
1733 |
+
def forward(self, sequence_output, embedding_weight, bias=None):
|
1734 |
+
prediction_scores = self.lm_head(sequence_output, embedding_weight, bias=bias)
|
1735 |
+
return prediction_scores
|
model/evl.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from typing import Dict, Iterable, List, Tuple
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from collections import OrderedDict
|
10 |
+
|
11 |
+
|
12 |
+
class QuickGELU(nn.Module):
|
13 |
+
def forward(self, x: torch.Tensor):
|
14 |
+
return x * torch.sigmoid(1.702 * x)
|
15 |
+
|
16 |
+
class LayerNorm(nn.LayerNorm):
|
17 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
18 |
+
|
19 |
+
def forward(self, x: torch.Tensor):
|
20 |
+
orig_type = x.dtype
|
21 |
+
ret = super().forward(x.type(torch.float32))
|
22 |
+
return ret.type(orig_type)
|
23 |
+
|
24 |
+
|
25 |
+
class Attention(nn.Module):
|
26 |
+
'''
|
27 |
+
A generalized attention module with more flexibility.
|
28 |
+
'''
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self, q_in_dim: int, k_in_dim: int, v_in_dim: int,
|
32 |
+
qk_proj_dim: int, v_proj_dim: int, num_heads: int, out_dim: int,
|
33 |
+
return_all_features: bool = False, add_mask: bool = False, dropout: float = 0.0
|
34 |
+
):
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
self.q_proj = nn.Linear(q_in_dim, qk_proj_dim)
|
38 |
+
self.k_proj = nn.Linear(k_in_dim, qk_proj_dim)
|
39 |
+
self.v_proj = nn.Linear(v_in_dim, v_proj_dim)
|
40 |
+
self.out_proj = nn.Linear(v_proj_dim, out_dim)
|
41 |
+
|
42 |
+
self.num_heads = num_heads
|
43 |
+
self.return_all_features = return_all_features
|
44 |
+
assert qk_proj_dim % num_heads == 0 and v_proj_dim % num_heads == 0
|
45 |
+
|
46 |
+
self.add_mask = add_mask
|
47 |
+
self._initialize_weights()
|
48 |
+
|
49 |
+
def _initialize_weights(self):
|
50 |
+
for m in (self.q_proj, self.k_proj, self.v_proj, self.out_proj):
|
51 |
+
nn.init.xavier_uniform_(m.weight)
|
52 |
+
nn.init.constant_(m.bias, 0.)
|
53 |
+
|
54 |
+
def forward(self, q, k, v, mask):
|
55 |
+
if not self.add_mask:
|
56 |
+
mask = torch.ones_like(mask)
|
57 |
+
|
58 |
+
assert q.ndim == 3 and k.ndim == 3 and v.ndim == 3
|
59 |
+
N = q.size(0); assert k.size(0) == N and v.size(0) == N
|
60 |
+
Lq, Lkv = q.size(1), k.size(1); assert v.size(1) == Lkv
|
61 |
+
|
62 |
+
q, k, v = self.q_proj(q), self.k_proj(k), self.v_proj(v)
|
63 |
+
|
64 |
+
H = self.num_heads
|
65 |
+
Cqk, Cv = q.size(-1) // H, v.size(-1) // H
|
66 |
+
|
67 |
+
q = q.view(N, Lq, H, Cqk)
|
68 |
+
k = k.view(N, Lkv, H, Cqk)
|
69 |
+
v = v.view(N, Lkv, H, Cv)
|
70 |
+
|
71 |
+
aff = torch.einsum('nqhc,nkhc->nqkh', q / (Cqk ** 0.5), k)
|
72 |
+
#aff = aff.softmax(dim=-2)
|
73 |
+
|
74 |
+
rmask = ~(mask.bool())
|
75 |
+
aff = aff.masked_fill(rmask.unsqueeze(1).unsqueeze(-1).to(aff.device), float("-inf"))
|
76 |
+
aff = aff.softmax(dim = -2)
|
77 |
+
|
78 |
+
mix = torch.einsum('nqlh,nlhc->nqhc', aff, v)
|
79 |
+
|
80 |
+
out = self.out_proj(mix.flatten(-2))
|
81 |
+
|
82 |
+
if self.return_all_features:
|
83 |
+
return dict(q=q, k=k, v=v, aff=aff, out=out)
|
84 |
+
else:
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
class TransformerDecoderLayer(nn.Module):
|
89 |
+
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
in_feature_dim: int = 768,
|
93 |
+
qkv_dim: int = 768,
|
94 |
+
num_heads: int = 12,
|
95 |
+
mlp_factor: float = 4.0,
|
96 |
+
mlp_dropout: float = 0.0,
|
97 |
+
act: nn.Module = QuickGELU,
|
98 |
+
add_mask: bool = False
|
99 |
+
):
|
100 |
+
super().__init__()
|
101 |
+
|
102 |
+
self.attn = Attention(
|
103 |
+
q_in_dim=in_feature_dim, k_in_dim=in_feature_dim, v_in_dim=in_feature_dim,
|
104 |
+
qk_proj_dim=qkv_dim, v_proj_dim=qkv_dim, num_heads=num_heads, out_dim=in_feature_dim, add_mask=add_mask
|
105 |
+
)
|
106 |
+
|
107 |
+
mlp_dim = round(mlp_factor * in_feature_dim)
|
108 |
+
self.mlp = nn.Sequential(OrderedDict([
|
109 |
+
('fc1', nn.Linear(in_feature_dim, mlp_dim)),
|
110 |
+
('act', act()),
|
111 |
+
('dropout', nn.Dropout(mlp_dropout)),
|
112 |
+
('fc2', nn.Linear(mlp_dim, in_feature_dim)),
|
113 |
+
]))
|
114 |
+
|
115 |
+
self.norm1 = LayerNorm(in_feature_dim)
|
116 |
+
self.norm2 = LayerNorm(in_feature_dim)
|
117 |
+
self.norm3 = LayerNorm(in_feature_dim)
|
118 |
+
|
119 |
+
self._initialize_weights()
|
120 |
+
|
121 |
+
|
122 |
+
def _initialize_weights(self):
|
123 |
+
for m in (self.mlp[0], self.mlp[-1]):
|
124 |
+
nn.init.xavier_uniform_(m.weight)
|
125 |
+
nn.init.normal_(m.bias, std=1e-6)
|
126 |
+
|
127 |
+
|
128 |
+
def forward(self, x, y, mask):
|
129 |
+
y_norm = self.norm3(y)
|
130 |
+
x = x + self.attn(self.norm1(x), y_norm, y_norm, mask)
|
131 |
+
x = x + self.mlp(self.norm2(x))
|
132 |
+
|
133 |
+
return x
|
134 |
+
|
135 |
+
|
136 |
+
class EVLDecoder(nn.Module):
|
137 |
+
|
138 |
+
def __init__(
|
139 |
+
self,
|
140 |
+
num_frames: int = 8,
|
141 |
+
spatial_size: Tuple[int, int] = (14, 14),
|
142 |
+
num_layers: int = 4,
|
143 |
+
in_feature_dim: int = 768,
|
144 |
+
qkv_dim: int = 768,
|
145 |
+
num_heads: int = 12,
|
146 |
+
mlp_factor: float = 4.0,
|
147 |
+
enable_temporal_conv: bool = True,
|
148 |
+
enable_temporal_pos_embed: bool = True,
|
149 |
+
mlp_dropout: float = 0.5,
|
150 |
+
add_vid_feat: bool = False,
|
151 |
+
add_mask: bool = False,
|
152 |
+
):
|
153 |
+
super().__init__()
|
154 |
+
|
155 |
+
self.num_layers = num_layers
|
156 |
+
|
157 |
+
self.add_vid_feat = add_vid_feat
|
158 |
+
|
159 |
+
if add_vid_feat:
|
160 |
+
self.decoder_layers = nn.ModuleList(
|
161 |
+
[TransformerDecoderLayer(in_feature_dim, qkv_dim, num_heads, mlp_factor, mlp_dropout, add_mask=add_mask) for _ in range(num_layers)]
|
162 |
+
)
|
163 |
+
self.cls_token = nn.Parameter(torch.zeros([in_feature_dim]))
|
164 |
+
self._initialize_weights()
|
165 |
+
|
166 |
+
if enable_temporal_conv:
|
167 |
+
self.temporal_conv = nn.ModuleList(
|
168 |
+
[nn.Conv1d(in_feature_dim, in_feature_dim, kernel_size=3, stride=1, padding=1, groups=in_feature_dim) for _ in range(num_layers)]
|
169 |
+
)
|
170 |
+
|
171 |
+
# self.temporal_conv = nn.ModuleList(
|
172 |
+
# [nn.Linear(in_feature_dim, in_feature_dim) for _ in range(num_layers)]
|
173 |
+
# )
|
174 |
+
|
175 |
+
if enable_temporal_pos_embed:
|
176 |
+
self.temporal_pos_embed = nn.ParameterList(
|
177 |
+
[nn.Parameter(torch.zeros([num_frames, in_feature_dim])) for _ in range(num_layers)]
|
178 |
+
)
|
179 |
+
|
180 |
+
def _initialize_weights(self):
|
181 |
+
nn.init.normal_(self.cls_token, std=0.02)
|
182 |
+
|
183 |
+
def forward(self, in_features, video_mask):
|
184 |
+
N, T, C = in_features.size()
|
185 |
+
|
186 |
+
if self.add_vid_feat:
|
187 |
+
x = self.cls_token.view(1, 1, -1).repeat(N, 1, 1)
|
188 |
+
|
189 |
+
frame_features = in_features
|
190 |
+
for i in range(self.num_layers):
|
191 |
+
frame_features = in_features
|
192 |
+
feat = in_features
|
193 |
+
|
194 |
+
feat = feat.permute(0, 2, 1).contiguous() # N * L, C, T
|
195 |
+
|
196 |
+
|
197 |
+
feat = self.temporal_conv[i](feat)
|
198 |
+
feat = feat.view(N, C, T).permute(0, 2, 1,).contiguous() # N, T, C
|
199 |
+
frame_features = frame_features + feat
|
200 |
+
|
201 |
+
frame_features = frame_features + self.temporal_pos_embed[i].view(1, T, C)
|
202 |
+
|
203 |
+
if self.add_vid_feat:
|
204 |
+
x = self.decoder_layers[i](x, frame_features, video_mask)
|
205 |
+
|
206 |
+
if self.add_vid_feat:
|
207 |
+
return x
|
208 |
+
|
209 |
+
return frame_features
|
210 |
+
|
211 |
+
|
212 |
+
class EVLTransformer(nn.Module):
|
213 |
+
|
214 |
+
def __init__(
|
215 |
+
self,
|
216 |
+
num_frames: int = 8,
|
217 |
+
decoder_num_layers: int = 2,
|
218 |
+
decoder_qkv_dim: int = 768,
|
219 |
+
decoder_num_heads: int = 16,
|
220 |
+
decoder_mlp_factor: float = 4.0,
|
221 |
+
enable_temporal_conv: bool = True,
|
222 |
+
enable_temporal_pos_embed: bool = True,
|
223 |
+
enable_temporal_cross_attention: bool = False,
|
224 |
+
decoder_mlp_dropout: float = 0.5,
|
225 |
+
add_video_feat: bool = False,
|
226 |
+
output_dim: int = 1536,
|
227 |
+
add_mask: bool = False
|
228 |
+
):
|
229 |
+
super().__init__()
|
230 |
+
|
231 |
+
self.decoder_num_layers = decoder_num_layers
|
232 |
+
|
233 |
+
backbone_feature_dim = 768
|
234 |
+
backbone_spatial_size = (16, 16)
|
235 |
+
|
236 |
+
self.decoder = EVLDecoder(
|
237 |
+
num_frames=num_frames,
|
238 |
+
spatial_size=backbone_spatial_size,
|
239 |
+
num_layers=decoder_num_layers,
|
240 |
+
in_feature_dim=backbone_feature_dim,
|
241 |
+
qkv_dim=decoder_qkv_dim,
|
242 |
+
num_heads=decoder_num_heads,
|
243 |
+
mlp_factor=decoder_mlp_factor,
|
244 |
+
enable_temporal_conv=enable_temporal_conv,
|
245 |
+
enable_temporal_pos_embed=enable_temporal_pos_embed,
|
246 |
+
mlp_dropout=decoder_mlp_dropout,
|
247 |
+
add_vid_feat = add_video_feat,
|
248 |
+
add_mask=add_mask
|
249 |
+
)
|
250 |
+
self.add_vid_feat = add_video_feat
|
251 |
+
if self.add_vid_feat:
|
252 |
+
self.norm = nn.LayerNorm(backbone_feature_dim)
|
253 |
+
#self.dropout = nn.Dropout(0.5)
|
254 |
+
self.proj = nn.Linear(decoder_qkv_dim, output_dim)
|
255 |
+
|
256 |
+
def forward(self, x, video_mask):
|
257 |
+
|
258 |
+
features = x
|
259 |
+
x = self.decoder(features, video_mask)
|
260 |
+
if self.add_vid_feat:
|
261 |
+
x = self.norm(x)
|
262 |
+
#x = self.dropout(x)
|
263 |
+
x = self.proj(x)
|
264 |
+
|
265 |
+
return x
|
266 |
+
|
267 |
+
class TemporalAttention(nn.Module):
|
268 |
+
def __init__(
|
269 |
+
self,
|
270 |
+
in_feature_dim: int = 768,
|
271 |
+
qkv_dim: int = 768,
|
272 |
+
num_heads: int = 8,
|
273 |
+
max_frames: int = 40,
|
274 |
+
stride: int = 4,
|
275 |
+
kernel_size: int = 4,
|
276 |
+
add_mask: bool = True,
|
277 |
+
):
|
278 |
+
super().__init__()
|
279 |
+
|
280 |
+
self.num_layers = 2
|
281 |
+
self.kernel_size = kernel_size
|
282 |
+
self.stride = stride
|
283 |
+
max_frames = (max_frames - self.kernel_size) // self.stride + 1
|
284 |
+
|
285 |
+
self.decoder_layers = nn.ModuleList(
|
286 |
+
[TransformerDecoderLayer(in_feature_dim, qkv_dim, num_heads, 2.0, 0.5, add_mask=add_mask) for _ in range(self.num_layers)]
|
287 |
+
)
|
288 |
+
|
289 |
+
'''
|
290 |
+
self.attn = Attention(
|
291 |
+
q_in_dim=in_feature_dim, k_in_dim=in_feature_dim, v_in_dim=in_feature_dim,
|
292 |
+
qk_proj_dim=qkv_dim, v_proj_dim=qkv_dim, num_heads=num_heads, out_dim=in_feature_dim, add_mask=add_mask
|
293 |
+
)'''
|
294 |
+
|
295 |
+
self.temporal_pos_embed = nn.Parameter(torch.zeros([max_frames, in_feature_dim]))
|
296 |
+
self.norm = nn.LayerNorm(in_feature_dim)
|
297 |
+
|
298 |
+
def forward(self, x, video_mask):
|
299 |
+
|
300 |
+
x, video_mask = avg_1d_pool(x, self.kernel_size, self.stride, video_mask, return_mask=True)
|
301 |
+
|
302 |
+
x = x + self.temporal_pos_embed.unsqueeze(0)
|
303 |
+
for i in range(self.num_layers):
|
304 |
+
x = self.decoder_layers[i](x, x, video_mask)
|
305 |
+
|
306 |
+
#x_norm = self.norm(x)
|
307 |
+
#x = x + self.attn(x_norm, x_norm, x_norm, video_mask)
|
308 |
+
|
309 |
+
return x
|
310 |
+
|
311 |
+
def recursive_gumbel_softmax(sim, x, video_mask, topk):
|
312 |
+
# sim: bs, T
|
313 |
+
# x: bs, T, dim
|
314 |
+
|
315 |
+
feats = []
|
316 |
+
bs = x.shape[0]
|
317 |
+
idxs = torch.zeros(bs, 10)
|
318 |
+
v_masks = []
|
319 |
+
|
320 |
+
rmask = ~(video_mask.bool())
|
321 |
+
sim = sim.masked_fill(rmask.unsqueeze(1).to(sim.device), float("-inf"))
|
322 |
+
|
323 |
+
for i in range(topk):
|
324 |
+
choice = F.gumbel_softmax(sim/0.01, hard=True, dim = -1, tau=0.1).squeeze(1) # bs, T
|
325 |
+
idxs[:, i] = torch.argsort(choice, descending=True)[:, 0]
|
326 |
+
tmp = torch.sum(choice.unsqueeze(-1) * x, dim = 1, keepdim=True) # bs, dim
|
327 |
+
feats.append(tmp)
|
328 |
+
|
329 |
+
mask_tmp = video_mask[torch.arange(bs), idxs[:, i].to(torch.long)]
|
330 |
+
v_masks.append(mask_tmp)
|
331 |
+
sim = sim - choice.unsqueeze(1)
|
332 |
+
|
333 |
+
rank = torch.argsort(idxs, dim = 1)
|
334 |
+
|
335 |
+
feats = torch.cat(feats, dim= 1) # bs, 10, dim
|
336 |
+
res = [feats[torch.arange(bs), rank[:, i]] for i in range(10)]
|
337 |
+
res = torch.stack(res, dim=1)
|
338 |
+
|
339 |
+
video_mask = torch.stack(v_masks, dim=1)
|
340 |
+
video_mask = [video_mask[torch.arange(bs), rank[:, i]] for i in range(10)]
|
341 |
+
video_mask = torch.stack(video_mask, dim = 1)
|
342 |
+
|
343 |
+
return res, video_mask
|
344 |
+
|
345 |
+
|
model/moe.py
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
### copy from LIMoE
|
3 |
+
|
4 |
+
|
5 |
+
#from distutils.command.config import config
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.distributions.normal import Normal
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from transformers.activations import ACT2FN
|
14 |
+
from .adapter import Adapter
|
15 |
+
from collections import OrderedDict
|
16 |
+
from copy import deepcopy
|
17 |
+
|
18 |
+
#-------------------#
|
19 |
+
# MoE
|
20 |
+
|
21 |
+
class MLP(nn.Module):
|
22 |
+
def __init__(self, input_size:int, output_size:int, hidden_size:int):
|
23 |
+
super(MLP, self).__init__()
|
24 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
25 |
+
self.fc2 = nn.Linear(hidden_size, output_size)
|
26 |
+
self.dropout = nn.Dropout(0.1)
|
27 |
+
self.activation = ACT2FN["gelu"]
|
28 |
+
self.log_soft = nn.LogSoftmax(1)
|
29 |
+
self.apply(self.init_weights)
|
30 |
+
|
31 |
+
def init_weights(self, m: nn.Module, std=1e-3):
|
32 |
+
if isinstance(m, nn.Linear):
|
33 |
+
torch.nn.init.normal_(m.weight, std=std)
|
34 |
+
torch.nn.init.normal_(m.bias, std=std)
|
35 |
+
m.weight.data = torch.clamp(m.weight.data, min=-2 * std, max=2 * std)
|
36 |
+
m.bias.data = torch.clamp(m.bias.data, min=-2 * std, max=2 * std)
|
37 |
+
elif isinstance(m, nn.LayerNorm):
|
38 |
+
m.bias.data.zero_()
|
39 |
+
m.weight.data.fill_(1.0)
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
out = self.fc1(x)
|
43 |
+
out = self.activation(out)
|
44 |
+
out = self.dropout(out)
|
45 |
+
out = self.fc2(out)
|
46 |
+
out = self.log_soft(out)
|
47 |
+
return out
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
class SparseDispatcher(object):
|
52 |
+
"""Helper for implementing a mixture of experts.
|
53 |
+
The purpose of this class is to create input minibatches for the
|
54 |
+
experts and to combine the results of the experts to form a unified
|
55 |
+
output tensor.
|
56 |
+
There are two functions:
|
57 |
+
dispatch - take an input Tensor and create input Tensors for each expert.
|
58 |
+
combine - take output Tensors from each expert and form a combined output
|
59 |
+
Tensor. Outputs from different experts for the same batch element are
|
60 |
+
summed together, weighted by the provided "gates".
|
61 |
+
The class is initialized with a "gates" Tensor, which specifies which
|
62 |
+
batch elements go to which experts, and the weights to use when combining
|
63 |
+
the outputs. Batch element b is sent to expert e iff gates[b, e] != 0.
|
64 |
+
The inputs and outputs are all two-dimensional [batch, depth].
|
65 |
+
Caller is responsible for collapsing additional dimensions prior to
|
66 |
+
calling this class and reshaping the output to the original shape.
|
67 |
+
See common_layers.reshape_like().
|
68 |
+
Example use:
|
69 |
+
gates: a float32 `Tensor` with shape `[batch_size, num_experts]`
|
70 |
+
inputs: a float32 `Tensor` with shape `[batch_size, input_size]`
|
71 |
+
experts: a list of length `num_experts` containing sub-networks.
|
72 |
+
dispatcher = SparseDispatcher(num_experts, gates)
|
73 |
+
expert_inputs = dispatcher.dispatch(inputs)
|
74 |
+
expert_outputs = [experts[i](expert_inputs[i]) for i in range(num_experts)]
|
75 |
+
outputs = dispatcher.combine(expert_outputs)
|
76 |
+
The preceding code sets the output for a particular example b to:
|
77 |
+
output[b] = Sum_i(gates[b, i] * experts[i](inputs[b]))
|
78 |
+
This class takes advantage of sparsity in the gate matrix by including in the
|
79 |
+
`Tensor`s for expert i only the batch elements for which `gates[b, i] > 0`.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(self, num_experts, gates):
|
83 |
+
"""Create a SparseDispatcher."""
|
84 |
+
|
85 |
+
self._gates = gates
|
86 |
+
self._num_experts = num_experts
|
87 |
+
# sort experts
|
88 |
+
sorted_experts, index_sorted_experts = torch.nonzero(gates).sort(0) # torch.nonzero: 返回非0坐标,按行、列依次排序
|
89 |
+
# drop indices
|
90 |
+
_, self._expert_index = sorted_experts.split(1, dim=1)
|
91 |
+
# get according batch index for each expert
|
92 |
+
self._batch_index = sorted_experts[index_sorted_experts[:, 1],0]
|
93 |
+
# calculate num samples that each expert gets
|
94 |
+
self._part_sizes = list((gates > 0).sum(0).cpu().numpy())
|
95 |
+
# expand gates to match with self._batch_index
|
96 |
+
gates_exp = gates[self._batch_index.flatten()]
|
97 |
+
self._nonzero_gates = torch.gather(gates_exp, 1, self._expert_index)
|
98 |
+
|
99 |
+
def dispatch(self, inp):
|
100 |
+
"""Create one input Tensor for each expert.
|
101 |
+
The `Tensor` for a expert `i` contains the slices of `inp` corresponding
|
102 |
+
to the batch elements `b` where `gates[b, i] > 0`.
|
103 |
+
Args:
|
104 |
+
inp: a `Tensor` of shape "[batch_size, <extra_input_dims>]`
|
105 |
+
Returns:
|
106 |
+
a list of `num_experts` `Tensor`s with shapes
|
107 |
+
`[expert_batch_size_i, <extra_input_dims>]`.
|
108 |
+
"""
|
109 |
+
|
110 |
+
# assigns samples to experts whose gate is nonzero
|
111 |
+
|
112 |
+
# expand according to batch index so we can just split by _part_sizes
|
113 |
+
inp_exp = inp[self._batch_index].squeeze(1)
|
114 |
+
return torch.split(inp_exp, self._part_sizes, dim=0)
|
115 |
+
|
116 |
+
|
117 |
+
def combine(self, expert_out, multiply_by_gates=True):
|
118 |
+
"""Sum together the expert output, weighted by the gates.
|
119 |
+
The slice corresponding to a particular batch element `b` is computed
|
120 |
+
as the sum over all experts `i` of the expert output, weighted by the
|
121 |
+
corresponding gate values. If `multiply_by_gates` is set to False, the
|
122 |
+
gate values are ignored.
|
123 |
+
Args:
|
124 |
+
expert_out: a list of `num_experts` `Tensor`s, each with shape
|
125 |
+
`[expert_batch_size_i, <extra_output_dims>]`.
|
126 |
+
multiply_by_gates: a boolean
|
127 |
+
Returns:
|
128 |
+
a `Tensor` with shape `[batch_size, <extra_output_dims>]`.
|
129 |
+
"""
|
130 |
+
# apply exp to expert outputs, so we are not longer in log space
|
131 |
+
|
132 |
+
#stitched = torch.cat(expert_out, 0).exp()
|
133 |
+
stitched = torch.cat(expert_out, 0)
|
134 |
+
|
135 |
+
if multiply_by_gates:
|
136 |
+
if len(stitched.shape) == 3:
|
137 |
+
stitched = stitched.mul(self._nonzero_gates.unsqueeze(1))
|
138 |
+
else:
|
139 |
+
stitched = stitched.mul(self._nonzero_gates)
|
140 |
+
|
141 |
+
if len(stitched.shape) == 3:
|
142 |
+
zeros = torch.zeros(self._gates.size(0), expert_out[-1].size(1), expert_out[-1].size(-1), requires_grad=True, device=stitched.device)
|
143 |
+
else:
|
144 |
+
zeros = torch.zeros(self._gates.size(0), expert_out[-1].size(1), requires_grad=True, device=stitched.device)
|
145 |
+
# combine samples that have been processed by the same k experts
|
146 |
+
combined = zeros.index_add(0, self._batch_index, stitched.float())
|
147 |
+
# add eps to all zero values in order to avoid nans when going back to log space
|
148 |
+
|
149 |
+
#combined[combined == 0] = np.finfo(float).eps
|
150 |
+
# back to log space
|
151 |
+
#return combined.log()
|
152 |
+
return combined
|
153 |
+
|
154 |
+
|
155 |
+
def expert_to_gates(self):
|
156 |
+
"""Gate values corresponding to the examples in the per-expert `Tensor`s.
|
157 |
+
Returns:
|
158 |
+
a list of `num_experts` one-dimensional `Tensor`s with type `tf.float32`
|
159 |
+
and shapes `[expert_batch_size_i]`
|
160 |
+
"""
|
161 |
+
# split nonzero gates for each expert
|
162 |
+
return torch.split(self._nonzero_gates, self._part_sizes, dim=0)
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
class MoE(nn.Module):
|
168 |
+
|
169 |
+
"""Call a Sparsely gated mixture of experts layer with 1-layer Feed-Forward networks as experts.
|
170 |
+
Args:
|
171 |
+
input_size: integer - size of the input
|
172 |
+
output_size: integer - size of the input
|
173 |
+
num_experts: an integer - number of experts
|
174 |
+
hidden_size: an integer - hidden size of the experts
|
175 |
+
noisy_gating: a boolean
|
176 |
+
k: an integer - how many experts to use for each batch element
|
177 |
+
"""
|
178 |
+
|
179 |
+
def __init__(self,
|
180 |
+
noisy_gating = True,
|
181 |
+
ds_factor = 8.0,
|
182 |
+
num_experts = 4,
|
183 |
+
moe_input_size = 768,
|
184 |
+
top_k = 2,
|
185 |
+
dropout = 0.1,
|
186 |
+
gating = 'linear',
|
187 |
+
routing = None,
|
188 |
+
layer_id = 0
|
189 |
+
):
|
190 |
+
super(MoE, self).__init__()
|
191 |
+
self.noisy_gating = noisy_gating
|
192 |
+
self.num_experts = num_experts
|
193 |
+
self.input_size = moe_input_size
|
194 |
+
self.k = top_k
|
195 |
+
self.layer_id = layer_id
|
196 |
+
|
197 |
+
# instantiate experts
|
198 |
+
#self.experts = nn.ModuleList([MLP(self.input_size, self.output_size, self.hidden_size) for i in range(self.num_experts)])
|
199 |
+
self.gating = gating
|
200 |
+
self.experts = nn.ModuleList([Adapter(ds_factor, moe_input_size, dropout=dropout) for i in range(self.num_experts)])
|
201 |
+
self.routing = routing
|
202 |
+
self.infer_expert = None
|
203 |
+
|
204 |
+
|
205 |
+
if self.routing != 'random':
|
206 |
+
if gating == 'linear':
|
207 |
+
#self.w_gate = nn.Linear(self.input_size, self.num_experts, bias=False)
|
208 |
+
self.w_gate = nn.Parameter(torch.zeros(self.input_size, num_experts), requires_grad=True)
|
209 |
+
elif gating == 'cosine':
|
210 |
+
self.w_gate = CosineTopKGate(self.input_size, self.num_experts)
|
211 |
+
self.w_noise = nn.Parameter(torch.zeros(self.input_size, self.num_experts), requires_grad=True)
|
212 |
+
|
213 |
+
self.softplus = nn.Softplus()
|
214 |
+
self.softmax = nn.Softmax(-1)
|
215 |
+
self.register_buffer("mean", torch.tensor([0.0]))
|
216 |
+
self.register_buffer("std", torch.tensor([1.0]))
|
217 |
+
|
218 |
+
assert(self.k <= self.num_experts)
|
219 |
+
|
220 |
+
def cv_squared(self, x):
|
221 |
+
"""The squared coefficient of variation of a sample.
|
222 |
+
Useful as a loss to encourage a positive distribution to be more uniform.
|
223 |
+
Epsilons added for numerical stability.
|
224 |
+
Returns 0 for an empty Tensor.
|
225 |
+
Args:
|
226 |
+
x: a `Tensor`.
|
227 |
+
Returns:
|
228 |
+
a `Scalar`.
|
229 |
+
"""
|
230 |
+
eps = 1e-10
|
231 |
+
# if only num_experts = 1
|
232 |
+
if x.shape[0] == 1:
|
233 |
+
return torch.Tensor([0])
|
234 |
+
if len(x.shape) == 2:
|
235 |
+
x = x.sum(dim=0)
|
236 |
+
return x.float().var() / (x.float().mean()**2 + eps)
|
237 |
+
|
238 |
+
|
239 |
+
def _gates_to_load(self, gates):
|
240 |
+
"""Compute the true load per expert, given the gates.
|
241 |
+
The load is the number of examples for which the corresponding gate is >0.
|
242 |
+
Args:
|
243 |
+
gates: a `Tensor` of shape [batch_size, n]
|
244 |
+
Returns:
|
245 |
+
a float32 `Tensor` of shape [n]
|
246 |
+
"""
|
247 |
+
return (gates > 0).sum(0)
|
248 |
+
|
249 |
+
|
250 |
+
def _prob_in_top_k(self, clean_values, noisy_values, noise_stddev, noisy_top_values):
|
251 |
+
"""Helper function to NoisyTopKGating.
|
252 |
+
Computes the probability that value is in top k, given different random noise.
|
253 |
+
This gives us a way of backpropagating from a loss that balances the number
|
254 |
+
of times each expert is in the top k experts per example.
|
255 |
+
In the case of no noise, pass in None for noise_stddev, and the result will
|
256 |
+
not be differentiable.
|
257 |
+
Args:
|
258 |
+
clean_values: a `Tensor` of shape [batch, n].
|
259 |
+
noisy_values: a `Tensor` of shape [batch, n]. Equal to clean values plus
|
260 |
+
normally distributed noise with standard deviation noise_stddev.
|
261 |
+
noise_stddev: a `Tensor` of shape [batch, n], or None
|
262 |
+
noisy_top_values: a `Tensor` of shape [batch, m].
|
263 |
+
"values" Output of tf.top_k(noisy_top_values, m). m >= k+1
|
264 |
+
Returns:
|
265 |
+
a `Tensor` of shape [batch, n].
|
266 |
+
"""
|
267 |
+
|
268 |
+
batch = clean_values.size(0)
|
269 |
+
m = noisy_top_values.size(1)
|
270 |
+
top_values_flat = noisy_top_values.flatten() # (bs x m)
|
271 |
+
threshold_positions_if_in = torch.arange(batch) * m + self.k # bs
|
272 |
+
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in.to(top_values_flat.device)), 1)
|
273 |
+
|
274 |
+
if len(noisy_values.shape) == 3:
|
275 |
+
threshold_if_in = threshold_if_in.unsqueeze(1)
|
276 |
+
|
277 |
+
is_in = torch.gt(noisy_values, threshold_if_in)
|
278 |
+
threshold_positions_if_out = threshold_positions_if_in - 1
|
279 |
+
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat,0 , threshold_positions_if_out.to(top_values_flat.device)), 1)
|
280 |
+
if len(noisy_values.shape) == 3:
|
281 |
+
threshold_if_out = threshold_if_out.unsqueeze(1)
|
282 |
+
|
283 |
+
# is each value currently in the top k.
|
284 |
+
|
285 |
+
normal = Normal(self.mean.to(noise_stddev.device), self.std.to(noise_stddev.device))
|
286 |
+
prob_if_in = normal.cdf((clean_values - threshold_if_in)/noise_stddev)
|
287 |
+
prob_if_out = normal.cdf((clean_values - threshold_if_out)/noise_stddev)
|
288 |
+
prob = torch.where(is_in, prob_if_in, prob_if_out)
|
289 |
+
return prob
|
290 |
+
|
291 |
+
|
292 |
+
def random_k_gating(self, features, train):
|
293 |
+
if train:
|
294 |
+
idx = torch.randint(0, self.num_experts, 1)
|
295 |
+
results = self.experts[idx](features)
|
296 |
+
|
297 |
+
else:
|
298 |
+
results = []
|
299 |
+
for i in range(self.num_experts):
|
300 |
+
tmp = self.num_experts[i](features)
|
301 |
+
results.append(tmp)
|
302 |
+
|
303 |
+
results = torch.stack(results, dim=0).mean(dim=0)
|
304 |
+
|
305 |
+
return results
|
306 |
+
|
307 |
+
|
308 |
+
|
309 |
+
def noisy_top_k_gating(self, x, train, noise_epsilon=1e-2):
|
310 |
+
"""Noisy top-k gating.
|
311 |
+
See paper: https://arxiv.org/abs/1701.06538.
|
312 |
+
Args:
|
313 |
+
x: input Tensor with shape [batch_size, input_size]
|
314 |
+
train: a boolean - we only add noise at training time.
|
315 |
+
noise_epsilon: a float
|
316 |
+
Returns:
|
317 |
+
gates: a Tensor with shape [batch_size, num_experts]
|
318 |
+
load: a Tensor with shape [num_experts]
|
319 |
+
"""
|
320 |
+
#clean_logits = self.w_gate(x)
|
321 |
+
if self.gating == 'linear':
|
322 |
+
clean_logits = x @ self.w_gate
|
323 |
+
elif self.gating == 'cosine':
|
324 |
+
clean_logits = self.w_gate(x)
|
325 |
+
|
326 |
+
if self.noisy_gating and train:
|
327 |
+
raw_noise_stddev = x @ self.w_noise
|
328 |
+
noise_stddev = ((self.softplus(raw_noise_stddev) + noise_epsilon) * train)
|
329 |
+
noisy_logits = clean_logits + ( torch.randn_like(clean_logits) * noise_stddev)
|
330 |
+
logits = noisy_logits
|
331 |
+
else:
|
332 |
+
logits = clean_logits
|
333 |
+
|
334 |
+
# logits (bs, n): 表示选择n中每个expert的概率
|
335 |
+
|
336 |
+
# 选k个experts,返回相应的下标以及logit
|
337 |
+
top_logits, top_indices = logits.topk(min(self.k + 1, self.num_experts), dim= -1)
|
338 |
+
|
339 |
+
top_k_logits = top_logits[:, :self.k] if len(top_logits.shape) == 2 else top_logits[:, :, :self.k]
|
340 |
+
top_k_indices = top_indices[:, :self.k] if len(top_indices.shape) == 2 else top_indices[:, :, :self.k]
|
341 |
+
|
342 |
+
top_k_gates = self.softmax(top_k_logits)
|
343 |
+
|
344 |
+
zeros = torch.zeros_like(logits, requires_grad=True)
|
345 |
+
# 将经过softmax后的weight分配给相应的expert,未选定的expert的weight则为0
|
346 |
+
gates = zeros.scatter(-1, top_k_indices, top_k_gates)
|
347 |
+
|
348 |
+
if self.noisy_gating and self.k < self.num_experts and train:
|
349 |
+
load = (self._prob_in_top_k(clean_logits, noisy_logits, noise_stddev, top_logits)).sum(0)
|
350 |
+
else:
|
351 |
+
load = self._gates_to_load(gates)
|
352 |
+
return gates, load
|
353 |
+
|
354 |
+
|
355 |
+
def forward(self, x, frame_features, train=True, loss_coef=1e-2):
|
356 |
+
"""Args:
|
357 |
+
x: tensor shape [batch_size, input_size]
|
358 |
+
train: a boolean scalar.
|
359 |
+
loss_coef: a scalar - multiplier on load-balancing losses
|
360 |
+
Returns:
|
361 |
+
y: a tensor with shape [batch_size, output_size].
|
362 |
+
extra_training_loss: a scalar. This should be added into the overall
|
363 |
+
training loss of the model. The backpropagation of this loss
|
364 |
+
encourages all experts to be approximately equally used across a batch.
|
365 |
+
"""
|
366 |
+
|
367 |
+
if self.routing == 'random':
|
368 |
+
loss = None
|
369 |
+
load = None
|
370 |
+
if train:
|
371 |
+
gates = torch.zeros(x.shape[0], self.num_experts)
|
372 |
+
random_idx = torch.randint(0, self.num_experts, (x.shape[0],))
|
373 |
+
gates[torch.arange(x.shape[0]), random_idx] = 1
|
374 |
+
gates = gates.to(x.device)
|
375 |
+
dispatcher = SparseDispatcher(self.num_experts, gates)
|
376 |
+
|
377 |
+
expert_inputs = dispatcher.dispatch(frame_features) # 获取每个expert的输入
|
378 |
+
gates = dispatcher.expert_to_gates() #
|
379 |
+
expert_outputs = [self.experts[i](expert_inputs[i]) for i in range(self.num_experts)]
|
380 |
+
y = dispatcher.combine(expert_outputs)
|
381 |
+
else:
|
382 |
+
if self.infer_expert is None:
|
383 |
+
weights = [self.experts[i].state_dict() for i in range(self.num_experts)]
|
384 |
+
merge_weights = OrderedDict()
|
385 |
+
for idx, it in enumerate(weights):
|
386 |
+
for k,v in it.items():
|
387 |
+
merge_weights[k] = v / self.num_experts if idx==0 else merge_weights[k] + v / self.num_experts
|
388 |
+
|
389 |
+
self.infer_expert = deepcopy(self.experts[0])
|
390 |
+
self.infer_expert.load_state_dict(merge_weights)
|
391 |
+
|
392 |
+
y = self.infer_expert(frame_features)
|
393 |
+
|
394 |
+
return y, loss, load
|
395 |
+
|
396 |
+
else:
|
397 |
+
if len(x.shape) == 1:
|
398 |
+
x = x.unsqueeze(0)
|
399 |
+
|
400 |
+
gates, load = self.noisy_top_k_gating(x, train)
|
401 |
+
|
402 |
+
# calculate importance loss
|
403 |
+
importance = gates.sum(dim=0)
|
404 |
+
|
405 |
+
# calculate loss
|
406 |
+
loss = self.cv_squared(importance) + self.cv_squared(load)
|
407 |
+
loss *= loss_coef
|
408 |
+
|
409 |
+
dispatcher = SparseDispatcher(self.num_experts, gates)
|
410 |
+
|
411 |
+
expert_inputs = dispatcher.dispatch(frame_features) # 获取每个expert的输入
|
412 |
+
gates = dispatcher.expert_to_gates() # 获取
|
413 |
+
expert_outputs = [self.experts[i](expert_inputs[i]) for i in range(self.num_experts)]
|
414 |
+
y = dispatcher.combine(expert_outputs)
|
415 |
+
return y, loss, load
|
416 |
+
|
417 |
+
class CosineTopKGate(torch.nn.Module):
|
418 |
+
def __init__(self, model_dim, num_global_experts, proj_dim=256, init_t=0.5):
|
419 |
+
super(CosineTopKGate, self).__init__()
|
420 |
+
self.temperature = torch.nn.Parameter(torch.log(torch.full([1], 1.0 / init_t)), requires_grad=True)
|
421 |
+
self.cosine_projector = torch.nn.Linear(model_dim, proj_dim)
|
422 |
+
self.sim_matrix = torch.nn.Parameter(torch.randn(size=(proj_dim, num_global_experts)), requires_grad=True)
|
423 |
+
self.clamp_max = torch.log(torch.tensor(1. / 0.01)).item()
|
424 |
+
torch.nn.init.normal_(self.sim_matrix, 0, 0.01)
|
425 |
+
|
426 |
+
def forward(self, x):
|
427 |
+
cosine_projector = self.cosine_projector
|
428 |
+
sim_matrix = self.sim_matrix
|
429 |
+
logits = torch.matmul(F.normalize(cosine_projector(x), dim=1),
|
430 |
+
F.normalize(sim_matrix, dim=0))
|
431 |
+
logit_scale = torch.clamp(self.temperature, max=self.clamp_max).exp()
|
432 |
+
logits = logits * logit_scale
|
433 |
+
return logits
|
434 |
+
|
435 |
+
'''
|
436 |
+
model = MoE()
|
437 |
+
|
438 |
+
inputs = torch.randn((32, 1, 768))
|
439 |
+
frame_features = torch.randn((32,10, 768))
|
440 |
+
|
441 |
+
model(inputs, frame_features)
|
442 |
+
'''
|
tmp.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import json
|
3 |
+
import glob
|
4 |
+
|
5 |
+
result = json.load(open("/home/qinyixin/workspace/TgMoE/Frozenbilm/results/T_MoENet_NEXT-QA.json"))
|
6 |
+
video_dir = "/mnt/hdd3/qinyixin/nextqa/video"
|
7 |
+
|
8 |
+
cols = pd.read_csv("/mnt/hdd3/qinyixin/FrozenBilm/NEXT-QA/val.csv").columns.to_list()
|
9 |
+
nextqa = pd.read_csv("/mnt/hdd3/qinyixin/FrozenBilm/NEXT-QA/val.csv").values
|
10 |
+
qid_to_vidid = {}
|
11 |
+
for it in nextqa:
|
12 |
+
choices = [it[9 + idx] for idx in range(5)]
|
13 |
+
answer = choices[it[6]]
|
14 |
+
question = it[5]
|
15 |
+
qid = it[7]
|
16 |
+
vidid = str(it[1])
|
17 |
+
vid_path = glob.glob(video_dir + "/*/"+ vidid + ".mp4")
|
18 |
+
|
19 |
+
qid_to_vidid[str(qid)] = {"vid_path": vid_path,
|
20 |
+
"choices": str(choices),
|
21 |
+
"question": question,
|
22 |
+
"answer": answer
|
23 |
+
}
|
24 |
+
|
25 |
+
correct = []
|
26 |
+
for k, v in result.items():
|
27 |
+
if v['acc']:
|
28 |
+
correct.append(qid_to_vidid[k])
|
29 |
+
|
30 |
+
json.dump(correct, open("demo/T-MoENet_result.json", "w"))
|
tmp2.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from Infer import Infer
|
3 |
+
|
4 |
+
device = "cuda"
|
5 |
+
handler = Infer(device)
|
6 |
+
candidates = ['adjust the tree', 'get away the dust', 'dancing', 'pressed a button to activate', 'presents']
|
7 |
+
with torch.no_grad():
|
8 |
+
handler.generate("why did the boy clap his hands when he ran to the christmas tree?",
|
9 |
+
"/home/qinyixin/workspace/TgMoE/Frozenbilm/demo/videos/4882821564.mp4",
|
10 |
+
candidates)
|
videos/3249402410.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4a6869517220132f2ac016009a8c309464cc76058b475c17977ef641818396c
|
3 |
+
size 2414513
|
videos/4882821564.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49dd433b47f9e3c88c272332d5ae739fec1d9b4d96f5b93b8e648d2b45428b41
|
3 |
+
size 9316079
|
videos/6233408665.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3910609b3807f547bad0cc2375b471b1a409ef8742c723068bce0e1b48606aff
|
3 |
+
size 7806177
|