File size: 8,003 Bytes
f34dfa2
76f08bb
f34dfa2
4c65203
 
 
 
cfea9cd
4c65203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f34dfa2
4c65203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f34dfa2
4c65203
 
 
 
 
 
f34dfa2
4c65203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f34dfa2
4c65203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f34dfa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfea9cd
 
f34dfa2
cfea9cd
 
f34dfa2
 
cfea9cd
2a00ab9
cfea9cd
 
2a00ab9
 
 
 
 
 
cfea9cd
2a00ab9
f34dfa2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import gradio as gr
import spaces

import requests
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor

SCHEMA_DEFINITION= "{
  "$schema": "http://json-schema.org/draft-04/schema#",
  "type": "object",
  "properties": {
    "Issue_Description": {
      "type": "string"
    },
    "Root_Cause_Analysis": {
      "type": "object",
      "properties": {
        "LED_Analysis": {
          "type": "object",
          "properties": {
            "Color": {
              "type": "string"
            },
            "Pattern": {
              "type": "string"
            },
            "Indicates": {
              "type": "string"
            }
          },
          "required": [
            "Color",
            "Pattern",
            "Indicates"
          ]
        },
        "Error_Code": {
          "type": "string"
        },
        "Possible_Cause": {
          "type": "string"
        }
      },
      "required": [
        "LED_Analysis",
        "Error_Code",
        "Possible_Cause"
      ]
    },
    "Step_by_Step_Troubleshooting": {
      "type": "array",
      "items": [
        {
          "type": "object",
          "properties": {
            "Action": {
              "type": "string"
            },
            "Details": {
              "type": "string"
            },
            "Expected Outcome": {
              "type": "string"
            }
          },
          "required": [
            "Action",
            "Details",
            "Expected Outcome"
          ]
        },
        {
          "type": "object",
          "properties": {
            "Action": {
              "type": "string"
            },
            "Details": {
              "type": "string"
            },
            "Expected Outcome": {
              "type": "string"
            }
          },
          "required": [
            "Action",
            "Details",
            "Expected Outcome"
          ]
        },
        {
          "type": "object",
          "properties": {
            "Action": {
              "type": "string"
            },
            "Details": {
              "type": "string"
            },
            "Expected Outcome": {
              "type": "string"
            }
          },
          "required": [
            "Action",
            "Details",
            "Expected Outcome"
          ]
        },
        {
          "type": "object",
          "properties": {
            "Action": {
              "type": "string"
            },
            "Details": {
              "type": "string"
            },
            "Expected Outcome": {
              "type": "string"
            }
          },
          "required": [
            "Action",
            "Details",
            "Expected Outcome"
          ]
        }
      ]
    },
    "Recommended_Actions": {
      "type": "object",
      "properties": {
        "Immediate_Action": {
          "type": "string"
        },
        "If_Unresolved": {
          "type": "string"
        },
        "Preventative_Measure": {
          "type": "string"
        }
      },
      "required": [
        "Immediate_Action",
        "If_Unresolved",
        "Preventative_Measure"
      ]
    }
  },
  "required": [
    "Issue_Description",
    "Root_Cause_Analysis",
    "Step_by_Step_Troubleshooting",
    "Recommended_Actions"
  ]
}"
SYSTEM_INNSTRUCTION="You are a router troubleshooter. Your job is to analyze the provided router image, identify potential issues such as faulty connections, incorrect LED patterns, or error codes, and offer precise troubleshooting steps. Based on your analysis, generate a detailed observation that includes a root cause analysis, step-by-step actions for resolving the issue, and recommended preventive measures. The output must be in JSON format as per the following schema, ensuring users can easily follow and implement the suggested solutions.\n" + SCHEMA_DEFINITION


model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"

model = MllamaForConditionalGeneration.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_id)


def extract_json_from_markdown(markdown_text):
    """Extract JSON or code block from markdown text."""
    try:
        # Find the start and end of the code block (with or without "json")
        start_idx = markdown_text.find('```')
        end_idx = markdown_text.find('```', start_idx + 3)
        
        # If the block starts with '```json', skip the 'json' part
        if markdown_text[start_idx:start_idx + 7] == '```json':
            start_idx += len('```json')
        else:
            start_idx += len('```')

        # Extract and clean up the code block (json or not)
        json_str = markdown_text[start_idx:end_idx].strip()

        # Try to load it as JSON
        return json.loads(json_str)
    except Exception as e:
        print(f"Error extracting JSON: {e}")
        return None

@spaces.GPU
def diagnose_router(image):


    

    messages = [
         {"role": "system",
      "content": [{"type": "text",
                   "text": SYSTEM_INNSTRUCTION}],
         },
        {"role": "user", "content": [
            {"type": "image"},
            {"type": "text", "text": "Analyze this router issue and provide the diagnosis."}
        ]}
    ]
    input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(image, input_text, return_tensors="pt").to(model.device)

    # Generate the output from the model
    output = model.generate(**inputs, max_new_tokens=300)
    markdown_text = processor.decode(output[0])

    # Extract JSON from the markdown text
    result = extract_json_from_markdown(markdown_text)

    
    print (result)
    
    # Generate HTML content for structured display
    html_output = f"""
    <div style="font-family: Arial, sans-serif; color: #333;">
        <h2>Router Diagnosis</h2>
        <h3>Issue Description</h3>
        <p><strong>{result['Issue_Description']}</strong></p>
        
        <h3>Root Cause Analysis</h3>
        <ul>
            <li><strong>LED Color:</strong> {result['Root_Cause_Analysis']['LED_Analysis']['Color']}</li>
            <li><strong>LED Pattern:</strong> {result['Root_Cause_Analysis']['LED_Analysis']['Pattern']}</li>
            <li><strong>Indicates:</strong> {result['Root_Cause_Analysis']['LED_Analysis']['Indicates']}</li>
            <li><strong>Error Code:</strong> {result['Root_Cause_Analysis']['Error_Code']}</li>
            <li><strong>Possible Cause:</strong> {result['Root_Cause_Analysis']['Possible_Cause']}</li>
        </ul>
        
        <h3>Step-by-Step Troubleshooting</h3>
        <ol>
    """

    # Loop through each step in the troubleshooting process (now a list)
    for step in result["Step_by_Step_Troubleshooting"]:
        html_output += f"""
            <li><strong>{step['Action']}</strong>: {step['Details']}<br/>
            <em>Expected Outcome:</em> {step['Expected Outcome']}</li>
        """
    
    # Adding the Recommended Actions section
    html_output += f"""
        </ol>

        <h3>Recommended Actions</h3>
        <ul>
            <li><strong>Immediate Action:</strong> {result['Recommended_Actions']['Immediate_Action']}</li>
            <li><strong>If Unresolved:</strong> {result['Recommended_Actions']['If_Unresolved']}</li>
            <li><strong>Preventative Measure:</strong> {result['Recommended_Actions']['Preventative_Measure']}</li>
        </ul>
    </div>
    """
    
    return html_output

# Gradio UI
interface = gr.Interface(
    fn=diagnose_router,
    inputs=gr.Image(type="pil", label="Upload an image of the faulty router"),
    outputs=gr.HTML(),
    title="Structured Router Diagnosis",
    description="Upload a photo of your router to receive a professional diagnosis and troubleshooting steps displayed in a structured, easy-to-read format."
)

# Launch the UI
interface.launch()