import spaces import gradio as gr from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig from PIL import Image import torch import requests # Load the processor and model processor = AutoProcessor.from_pretrained( 'allenai/Molmo-7B-D-0924', trust_remote_code=True, torch_dtype='auto', device_map='auto' ) model = AutoModelForCausalLM.from_pretrained( 'allenai/Molmo-7B-D-0924', trust_remote_code=True, torch_dtype='auto', device_map='auto' ) @spaces.GPU def describe_image(image): # Process the image inputs = processor.process(images=[image], text="Describe this image.") # Move inputs to the correct device and make a batch of size 1 inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} # Generate output with maximum 200 new tokens output = model.generate_from_batch( inputs, GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer ) # Decode and return generated text generated_tokens = output[0, inputs['input_ids'].size(1):] generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) return generated_text # Gradio interface gr.Interface( fn=describe_image, inputs=gr.inputs.Image(type="pil"), outputs="text", title="Visual Language Model - Molmo", description="Upload an image, and the model will generate a detailed description of it." ).launch()