import gradio as gr import spaces import markdown import requests import torch from PIL import Image from transformers import MllamaForConditionalGeneration, AutoProcessor SYSTEM_INSTRUCTION="You are a medical report interpreter. Your task is to analyze the provided medical reports, identify key medical terms, diagnoses, or abnormalities, and provide a clear interpretation. Based on your analysis, generate a detailed summary that includes an explanation of the findings, recommended actions, and any additional insights for the patient or healthcare provider. Ensure your output is structured and easily understandable for both professionals and non-professionals." model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct" model = MllamaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) processor = AutoProcessor.from_pretrained(model_id) def extract_assistant_reply(input_string): # Define the tag that indicates the start of the assistant's reply start_tag = "<|start_header_id|>assistant<|end_header_id|>" # Find the position where the assistant's reply starts start_index = input_string.find(start_tag) if start_index == -1: return "Assistant's reply not found." start_index += len(start_tag) # Extract everything after the start tag assistant_reply = input_string[start_index:].strip() return assistant_reply @spaces.GPU def diagnose_router(image): messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": SYSTEM_INSTRUCTION} ]} ] input_text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(image, input_text, return_tensors="pt").to(model.device) # Generate the output from the model output = model.generate(**inputs, max_new_tokens=300) print(output) markdown_text = processor.decode(output[0]) print(markdown_text) markdown_text=extract_assistant_reply(markdown_text) html_output = markdown.markdown(markdown_text) return html_output # Gradio UI interface = gr.Interface( fn=diagnose_router, inputs=gr.Image(type="pil", label="Upload an image of the faulty router"), outputs=gr.HTML(), title="Router Diagnosis", description="Upload a photo of your router to receive a professional diagnosis and troubleshooting steps displayed in a structured, easy-to-read format." ) # Launch the UI interface.launch()