Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage | |
from langchain_core.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate | |
import os | |
import nltk | |
nltk.download("punkt") | |
st.title(':blue[Langchain:] A Rag System on “Leave No Context Behind” Paper') | |
st.header("AI Chatbot :robot_face:") | |
os.environ["GOOGLE_API_KEY"] = os.getenv("k4") | |
# Creating a template | |
chat_template = ChatPromptTemplate.from_messages([ | |
# System Message establishes bot's role and general behavior guidelines | |
SystemMessage(content="""You are a Helpful AI Bot. | |
You take the context and question from user. Your answer should be based on the specific context."""), | |
# Human Message Prompt Template | |
HumanMessagePromptTemplate.from_template("""Answer the question based on the given context. | |
Context: | |
{context} | |
Question: | |
{question} | |
Answer: """) | |
]) | |
#user's question. | |
#how many results we want to print. | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
chat_model = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest") | |
from langchain_core.output_parsers import StrOutputParser | |
output_parser = StrOutputParser() | |
chain = chat_template | chat_model | output_parser | |
from langchain_community.document_loaders import PDFMinerLoader | |
from langchain_text_splitters import NLTKTextSplitter | |
uploaded_file = st.file_uploader("Choose a pdf file",type = "pdf") | |
pdf_loader = PDFMinerLoader(uploaded_file) | |
dat_nik = pdf_loader.load() | |
text_splitter = NLTKTextSplitter(chunk_size = 500,chunk_overlap = 100) | |
chunks = test_splitter.split_documents(dat_nik) | |
# dat = PDFMinerLoader("2404.07143.pdf") | |
# dat_nik =dat.load() | |
# # Split the document into chunks | |
# text_splitter = NLTKTextSplitter(chunk_size=500, chunk_overlap=100) | |
# chunks = text_splitter.split_documents(dat_nik) | |
# Creating Chunks Embedding | |
# We are just loading OpenAIEmbeddings | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
embedding_model = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
# vectors = embeddings.embed_documents(chunks) | |
# Store the chunks in vector store | |
from langchain_community.vectorstores import Chroma | |
# Creating a New Chroma Database | |
db = Chroma.from_documents(chunks, embedding_model, persist_directory="./chroma_db_1") | |
# saving the database on drive | |
db.persist() | |
# Setting a Connection with the ChromaDB | |
db_connection = Chroma(persist_directory="./chroma_db_", embedding_function=embedding_model) | |
# Converting CHROMA db_connection to Retriever Object, which retrieves top 5 results | |
retriever = db_connection.as_retriever(search_kwargs={"k": 5}) | |
from langchain_core.runnables import RunnablePassthrough #takes user's question. | |
def format_docs(docs): | |
return "\n\n".join(doc.page_content for doc in docs) | |
# format chunks: takes the 5 results, combines all the chunks and displays one output. | |
rag_chain = ( | |
{"context": retriever | format_docs, "question": RunnablePassthrough()} | |
| chat_template | |
| chat_model | |
| output_parser | |
) | |
user_input = st.text_area("Ask Questions to AI") | |
if st.button("Submit"): | |
st.subheader(":green[Query:]") | |
st.subheader(user_input) | |
response = rag_chain.invoke(user_input) | |
st.subheader(":green[Response:-]") | |
st.write(response) |