import sys import time import warnings from pathlib import Path from typing import Optional import lightning as L import torch # support running without installing as a package wd = Path(__file__).parent.parent.resolve() sys.path.append(str(wd)) from generate import generate from lit_llama import Tokenizer from lit_llama.adapter import LLaMA from lit_llama.utils import lazy_load, llama_model_lookup, quantization from scripts.prepare_alpaca import generate_prompt def main( prompt: str = "What food do lamas eat?", input: str = "", adapter_path: Path = Path("out/adapter/alpaca/lit-llama-adapter-finetuned.pth"), pretrained_path: Path = Path("checkpoints/lit-llama/7B/lit-llama.pth"), tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"), quantize: Optional[str] = None, max_new_tokens: int = 100, top_k: int = 200, temperature: float = 0.8, ) -> None: """Generates a response based on a given instruction and an optional input. This script will only work with checkpoints from the instruction-tuned LLaMA-Adapter model. See `finetune_adapter.py`. Args: prompt: The prompt/instruction (Alpaca style). adapter_path: Path to the checkpoint with trained adapter weights, which are the output of `finetune_adapter.py`. input: Optional input (Alpaca style). pretrained_path: The path to the checkpoint with pretrained LLaMA weights. tokenizer_path: The tokenizer path to load. quantize: Whether to quantize the model and using which method: ``"llm.int8"``: LLM.int8() mode, ``"gptq.int4"``: GPTQ 4-bit mode. max_new_tokens: The number of generation steps to take. top_k: The number of top most probable tokens to consider in the sampling process. temperature: A value controlling the randomness of the sampling process. Higher values result in more random samples. """ assert adapter_path.is_file() assert pretrained_path.is_file() assert tokenizer_path.is_file() precision = "bf16-true" if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else "32-true" fabric = L.Fabric(devices=1, precision=precision) print("Loading model ...", file=sys.stderr) t0 = time.time() with lazy_load(pretrained_path) as pretrained_checkpoint, lazy_load(adapter_path) as adapter_checkpoint: name = llama_model_lookup(pretrained_checkpoint) with fabric.init_module(empty_init=True), quantization(mode=quantize): model = LLaMA.from_name(name) # 1. Load the pretrained weights model.load_state_dict(pretrained_checkpoint, strict=False) # 2. Load the fine-tuned adapter weights model.load_state_dict(adapter_checkpoint, strict=False) print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr) model.eval() model = fabric.setup(model) tokenizer = Tokenizer(tokenizer_path) sample = {"instruction": prompt, "input": input} prompt = generate_prompt(sample) encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device) prompt_length = encoded.size(0) t0 = time.perf_counter() y = generate(model, encoded, max_new_tokens, temperature=temperature, top_k=top_k, eos_id=tokenizer.eos_id) t = time.perf_counter() - t0 model.reset_cache() output = tokenizer.decode(y) output = output.split("### Response:")[1].strip() print(output) tokens_generated = y.size(0) - prompt_length print(f"\n\nTime for inference: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec", file=sys.stderr) if fabric.device.type == "cuda": print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB", file=sys.stderr) if __name__ == "__main__": from jsonargparse import CLI torch.set_float32_matmul_precision("high") warnings.filterwarnings( # Triggered internally at ../aten/src/ATen/EmptyTensor.cpp:31 "ignore", message="ComplexHalf support is experimental and many operators don't support it yet" ) CLI(main)