import sys import time import warnings from pathlib import Path from typing import Optional import lightning as L import torch # support running without installing as a package wd = Path(__file__).absolute().parent.parent sys.path.append(str(wd)) from lit_llama import LLaMA, Tokenizer from lit_llama.utils import quantization from scripts.prepare_alpaca import generate_prompt from generate import generate def main( prompt: str = "Hello, my name is", *, num_samples: int = 1, max_new_tokens: int = 50, top_k: int = 200, temperature: float = 0.8, checkpoint_path: Optional[Path] = None, tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"), model_size: str = "7B", quantize: Optional[str] = None, ) -> None: """Generates text samples based on a pre-trained LLaMA model and tokenizer. Args: prompt: The prompt string to use for generating the samples. num_samples: The number of text samples to generate. max_new_tokens: The number of generation steps to take. top_k: The number of top most probable tokens to consider in the sampling process. temperature: A value controlling the randomness of the sampling process. Higher values result in more random samples. checkpoint_path: The checkpoint path to load. tokenizer_path: The tokenizer path to load. model_size: The model size to load. quantize: Whether to quantize the model and using which method: ``"llm.int8"``: LLM.int8() mode, ``"gptq.int4"``: GPTQ 4-bit mode. """ if not checkpoint_path: checkpoint_path = Path(f"checkpoints/lit-llama/{model_size}/lit-llama.pth") assert checkpoint_path.is_file(), checkpoint_path assert tokenizer_path.is_file(), tokenizer_path precision = "bf16-true" if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else "32-true" fabric = L.Fabric(devices=1, precision=precision) print("Loading model ...", file=sys.stderr) t0 = time.time() with fabric.init_module(empty_init=True), quantization(mode=quantize): model = LLaMA.from_name(model_size) checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint) print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr) model.eval() model = fabric.setup(model) tokenizer = Tokenizer(tokenizer_path) sample = {"instruction": prompt, "input": input} prompt = generate_prompt(sample) encoded = tokenizer.encode(prompt, bos=True, eos=False, device=fabric.device) prompt_length = encoded.size(0) L.seed_everything(1234) for i in range(num_samples): t0 = time.perf_counter() y = generate(model, encoded, max_new_tokens, temperature=temperature, top_k=top_k) t = time.perf_counter() - t0 model.reset_cache() print(tokenizer.decode(y)) tokens_generated = y.size(0) - prompt_length print(f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec", file=sys.stderr) if fabric.device.type == "cuda": print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB", file=sys.stderr) if __name__ == "__main__": from jsonargparse import CLI torch.set_float32_matmul_precision("high") warnings.filterwarnings( # Triggered internally at ../aten/src/ATen/EmptyTensor.cpp:31 "ignore", message="ComplexHalf support is experimental and many operators don't support it yet" ) warnings.filterwarnings( # Triggered in bitsandbytes/autograd/_functions.py:298 "ignore", message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization", ) CLI(main)