|
import sys |
|
import time |
|
import warnings |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import lightning as L |
|
import torch |
|
|
|
|
|
wd = Path(__file__).absolute().parent.parent |
|
sys.path.append(str(wd)) |
|
|
|
from lit_llama import LLaMA, Tokenizer |
|
from lit_llama.utils import quantization |
|
from scripts.prepare_alpaca import generate_prompt |
|
from generate import generate |
|
|
|
|
|
def main( |
|
prompt: str = "Hello, my name is", |
|
*, |
|
num_samples: int = 1, |
|
max_new_tokens: int = 50, |
|
top_k: int = 200, |
|
temperature: float = 0.8, |
|
checkpoint_path: Optional[Path] = None, |
|
tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"), |
|
model_size: str = "7B", |
|
quantize: Optional[str] = None, |
|
) -> None: |
|
"""Generates text samples based on a pre-trained LLaMA model and tokenizer. |
|
|
|
Args: |
|
prompt: The prompt string to use for generating the samples. |
|
num_samples: The number of text samples to generate. |
|
max_new_tokens: The number of generation steps to take. |
|
top_k: The number of top most probable tokens to consider in the sampling process. |
|
temperature: A value controlling the randomness of the sampling process. Higher values result in more random |
|
samples. |
|
checkpoint_path: The checkpoint path to load. |
|
tokenizer_path: The tokenizer path to load. |
|
model_size: The model size to load. |
|
quantize: Whether to quantize the model and using which method: |
|
``"llm.int8"``: LLM.int8() mode, |
|
``"gptq.int4"``: GPTQ 4-bit mode. |
|
""" |
|
if not checkpoint_path: |
|
checkpoint_path = Path(f"checkpoints/lit-llama/{model_size}/lit-llama.pth") |
|
assert checkpoint_path.is_file(), checkpoint_path |
|
assert tokenizer_path.is_file(), tokenizer_path |
|
|
|
precision = "bf16-true" if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else "32-true" |
|
fabric = L.Fabric(devices=1, precision=precision) |
|
|
|
print("Loading model ...", file=sys.stderr) |
|
t0 = time.time() |
|
|
|
with fabric.init_module(empty_init=True), quantization(mode=quantize): |
|
model = LLaMA.from_name(model_size) |
|
|
|
checkpoint = torch.load(checkpoint_path) |
|
model.load_state_dict(checkpoint) |
|
print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr) |
|
|
|
model.eval() |
|
model = fabric.setup(model) |
|
|
|
tokenizer = Tokenizer(tokenizer_path) |
|
sample = {"instruction": prompt, "input": input} |
|
prompt = generate_prompt(sample) |
|
encoded = tokenizer.encode(prompt, bos=True, eos=False, device=fabric.device) |
|
prompt_length = encoded.size(0) |
|
|
|
L.seed_everything(1234) |
|
for i in range(num_samples): |
|
t0 = time.perf_counter() |
|
y = generate(model, encoded, max_new_tokens, temperature=temperature, top_k=top_k) |
|
t = time.perf_counter() - t0 |
|
|
|
model.reset_cache() |
|
print(tokenizer.decode(y)) |
|
tokens_generated = y.size(0) - prompt_length |
|
print(f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec", file=sys.stderr) |
|
if fabric.device.type == "cuda": |
|
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB", file=sys.stderr) |
|
|
|
|
|
if __name__ == "__main__": |
|
from jsonargparse import CLI |
|
|
|
torch.set_float32_matmul_precision("high") |
|
warnings.filterwarnings( |
|
|
|
"ignore", |
|
message="ComplexHalf support is experimental and many operators don't support it yet" |
|
) |
|
warnings.filterwarnings( |
|
|
|
"ignore", |
|
message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization", |
|
) |
|
CLI(main) |
|
|