File size: 12,050 Bytes
7d52396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
"""Full definition of a LLaMA Language Model, all of it in this single file.

Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
"""
# mypy: ignore-errors
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from torch.nn import functional as F
from typing_extensions import Self

from lit_llama.utils import find_multiple


MaskCache = torch.Tensor
RoPECache = torch.Tensor
KVCache = Tuple[torch.Tensor, torch.Tensor]


@dataclass
class LLaMAConfig:
    block_size: int = 2048
    vocab_size: int = 32000
    padded_vocab_size: Optional[int] = None
    n_layer: int = 32
    n_head: int = 32
    n_embd: int = 4096

    def __post_init__(self):
        if self.padded_vocab_size is None:
            self.padded_vocab_size = find_multiple(self.vocab_size, 64)

    @classmethod
    def from_name(cls, name: str) -> Self:
        return cls(**llama_configs[name])


llama_configs = {
    "7B": dict(n_layer=32, n_head=32, n_embd=4096),
    "13B": dict(n_layer=40, n_head=40, n_embd=5120),
    "30B": dict(n_layer=60, n_head=52, n_embd=6656),
    "65B": dict(n_layer=80, n_head=64, n_embd=8192),
}


class LLaMA(nn.Module):
    def __init__(self, config: LLaMAConfig) -> None:
        super().__init__()
        assert config.padded_vocab_size is not None
        self.config = config

        self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
                h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
                ln_f=RMSNorm(config.n_embd),
            )
        )

        self.rope_cache: Optional[RoPECache] = None
        self.mask_cache: Optional[MaskCache] = None
        self.kv_caches: List[KVCache] = []

    def _init_weights(self, module: nn.Module) -> None:
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layer))
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layer))

    def forward(
        self, idx: torch.Tensor, max_seq_length: Optional[int] = None, input_pos: Optional[torch.Tensor] = None
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, List[KVCache]]]:
        B, T = idx.size()

        block_size = self.config.block_size
        if max_seq_length is None:
            max_seq_length = block_size
        assert T <= max_seq_length, f"Cannot forward sequence of length {T}, max seq length is only {max_seq_length}"
        assert max_seq_length <= block_size, f"Cannot attend to {max_seq_length}, block size is only {block_size}"
        assert T <= block_size, f"Cannot forward sequence of length {T}, block size is only {block_size}"

        if self.rope_cache is None:
            self.rope_cache = self.build_rope_cache(idx)
        if self.mask_cache is None:
            self.mask_cache = self.build_mask_cache(idx)

        if input_pos is not None:
            rope = self.rope_cache.index_select(0, input_pos)
            mask = self.mask_cache.index_select(2, input_pos)
            mask = mask[:, :, :, :max_seq_length]
        else:
            rope = self.rope_cache[:T]
            mask = self.mask_cache[:, :, :T, :T]

        # forward the model itself
        x = self.transformer.wte(idx)  # token embeddings of shape (b, t, n_embd)

        if input_pos is None:  # proxy for use_cache=False
            for block in self.transformer.h:
                x, _ = block(x, rope, mask, max_seq_length)
        else:
            if not self.kv_caches:
                head_size = self.config.n_embd // self.config.n_head
                cache_shape = (B, self.config.n_head, max_seq_length, head_size)
                self.kv_caches = [
                    (torch.zeros(cache_shape, device=x.device, dtype=x.dtype), torch.zeros(cache_shape, device=x.device, dtype=x.dtype))
                    for _ in range(self.config.n_layer)
                ]
            for i, block in enumerate(self.transformer.h):
                x, self.kv_caches[i] = block(x, rope, mask, max_seq_length, input_pos, self.kv_caches[i])

        x = self.transformer.ln_f(x)

        logits = self.lm_head(x)  # (b, t, vocab_size)

        return logits

    @classmethod
    def from_name(cls, name: str) -> Self:
        return cls(LLaMAConfig.from_name(name))

    def build_rope_cache(self, idx: torch.Tensor) -> RoPECache:
        return build_rope_cache(
            seq_len=self.config.block_size,
            n_elem=self.config.n_embd // self.config.n_head,
            dtype=idx.dtype,
            device=idx.device,
        )

    def build_mask_cache(self, idx: torch.Tensor) -> MaskCache:
        ones = torch.ones((self.config.block_size, self.config.block_size), device=idx.device, dtype=torch.bool)
        return torch.tril(ones).unsqueeze(0).unsqueeze(0)

    def reset_cache(self) -> None:
        self.kv_caches.clear()
        if self.mask_cache.device.type == "xla":
            # https://github.com/Lightning-AI/lit-parrot/pull/83#issuecomment-1558150179
            self.rope_cache = None
            self.mask_cache = None


class Block(nn.Module):
    def __init__(self, config: LLaMAConfig) -> None:
        super().__init__()
        self.rms_1 = RMSNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.rms_2 = RMSNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(
        self,
        x: torch.Tensor,
        rope: RoPECache,
        mask: MaskCache,
        max_seq_length: int,
        input_pos: Optional[torch.Tensor] = None,
        kv_cache: Optional[KVCache] = None,
    ) -> Tuple[torch.Tensor, Optional[KVCache]]:
        h, new_kv_cache = self.attn(self.rms_1(x), rope, mask, max_seq_length, input_pos, kv_cache)
        x = x + h
        x = x + self.mlp(self.rms_2(x))
        return x, new_kv_cache


class CausalSelfAttention(nn.Module):
    def __init__(self, config: LLaMAConfig) -> None:
        super().__init__()
        assert config.n_embd % config.n_head == 0

        # key, query, value projections for all heads, but in a batch
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=False)
        # output projection
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)

        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.block_size = config.block_size

    def forward(
        self,
        x: torch.Tensor,
        rope: RoPECache,
        mask: MaskCache,
        max_seq_length: int,
        input_pos: Optional[torch.Tensor] = None,
        kv_cache: Optional[KVCache] = None,
    ) -> Tuple[torch.Tensor, Optional[KVCache]]:
        B, T, C = x.size()  # batch size, sequence length, embedding dimensionality (n_embd)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)

        head_size = C // self.n_head
        k = k.view(B, T, self.n_head, head_size)
        q = q.view(B, T, self.n_head, head_size)
        v = v.view(B, T, self.n_head, head_size)

        q = apply_rope(q, rope)
        k = apply_rope(k, rope)

        k = k.transpose(1, 2)  # (B, nh, T, hs)
        q = q.transpose(1, 2)  # (B, nh, T, hs)
        v = v.transpose(1, 2)  # (B, nh, T, hs)

        if kv_cache is not None:
            cache_k, cache_v = kv_cache
            # check if reached token limit
            if input_pos[-1] >= max_seq_length:
                input_pos = torch.tensor(max_seq_length - 1, device=input_pos.device)
                # shift 1 position to the left
                cache_k = torch.roll(cache_k, -1, dims=2)
                cache_v = torch.roll(cache_v, -1, dims=2)
            k = cache_k.index_copy(2, input_pos, k)
            v = cache_v.index_copy(2, input_pos, v)
            kv_cache = k, v

        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        #  att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        #  att = att.masked_fill(mask[:,:,:T,:T] == 0, float('-inf'))
        #  att = F.softmax(att, dim=-1)
        #  y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)

        # efficient attention using Flash Attention CUDA kernels
        y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)

        y = y.transpose(1, 2).contiguous().view(B, T, C)  # re-assemble all head outputs side by side

        # output projection
        y = self.c_proj(y)

        return y, kv_cache


class MLP(nn.Module):
    def __init__(self, config: LLaMAConfig) -> None:
        super().__init__()
        hidden_dim = 4 * config.n_embd
        n_hidden = int(2 * hidden_dim / 3)
        n_hidden = find_multiple(n_hidden, 256)

        self.c_fc1 = nn.Linear(config.n_embd, n_hidden, bias=False)
        self.c_fc2 = nn.Linear(config.n_embd, n_hidden, bias=False)
        self.c_proj = nn.Linear(n_hidden, config.n_embd, bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
        x = self.c_proj(x)
        return x


class RMSNorm(nn.Module):
    """Root Mean Square Layer Normalization.

    Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License:
    https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.
    """

    def __init__(self, size: int, dim: int = -1, eps: float = 1e-5) -> None:
        super().__init__()
        self.scale = nn.Parameter(torch.ones(size))
        self.eps = eps
        self.dim = dim

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # NOTE: the original RMSNorm paper implementation is not equivalent
        # norm_x = x.norm(2, dim=self.dim, keepdim=True)
        # rms_x = norm_x * d_x ** (-1. / 2)
        # x_normed = x / (rms_x + self.eps)
        norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
        x_normed = x * torch.rsqrt(norm_x + self.eps)
        return self.scale * x_normed


def build_rope_cache(
    seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
) -> RoPECache:
    """Enhanced Transformer with Rotary Position Embedding.

    Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
    transformers/rope/__init__.py. MIT License:
    https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
    """
    # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
    theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))

    # Create position indexes `[0, 1, ..., seq_len - 1]`
    seq_idx = torch.arange(seq_len, dtype=dtype, device=device)

    # Calculate the product of position index and $\theta_i$
    idx_theta = torch.outer(seq_idx, theta).float()

    cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)

    # this is to mimic the behaviour of complex32, else we will get different results
    if dtype in (torch.float16, torch.bfloat16, torch.int8):
        cache = cache.half()
    return cache


def apply_rope(x: torch.Tensor, rope_cache: RoPECache) -> torch.Tensor:
    # truncate to support variable sizes
    T = x.size(1)
    rope_cache = rope_cache[:T]

    # cast because the reference does
    xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
    rope_cache = rope_cache.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
    x_out2 = torch.stack(
        [
            xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
            xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
        ],
        -1,
    )

    x_out2 = x_out2.flatten(3)
    return x_out2.type_as(x)