# Ultralytics YOLO 🚀, AGPL-3.0 license import torch from ultralytics.data.augment import LetterBox from ultralytics.engine.predictor import BasePredictor from ultralytics.engine.results import Results from ultralytics.utils import ops class RTDETRPredictor(BasePredictor): """ RT-DETR (Real-Time Detection Transformer) Predictor extending the BasePredictor class for making predictions using Baidu's RT-DETR model. This class leverages the power of Vision Transformers to provide real-time object detection while maintaining high accuracy. It supports key features like efficient hybrid encoding and IoU-aware query selection. Example: ```python from ultralytics.utils import ASSETS from ultralytics.models.rtdetr import RTDETRPredictor args = dict(model='rtdetr-l.pt', source=ASSETS) predictor = RTDETRPredictor(overrides=args) predictor.predict_cli() ``` Attributes: imgsz (int): Image size for inference (must be square and scale-filled). args (dict): Argument overrides for the predictor. """ def postprocess(self, preds, img, orig_imgs): """ Postprocess the raw predictions from the model to generate bounding boxes and confidence scores. The method filters detections based on confidence and class if specified in `self.args`. Args: preds (list): List of [predictions, extra] from the model. img (torch.Tensor): Processed input images. orig_imgs (list or torch.Tensor): Original, unprocessed images. Returns: (list[Results]): A list of Results objects containing the post-processed bounding boxes, confidence scores, and class labels. """ if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference preds = [preds, None] nd = preds[0].shape[-1] bboxes, scores = preds[0].split((4, nd - 4), dim=-1) if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) results = [] for i, bbox in enumerate(bboxes): # (300, 4) bbox = ops.xywh2xyxy(bbox) score, cls = scores[i].max(-1, keepdim=True) # (300, 1) idx = score.squeeze(-1) > self.args.conf # (300, ) if self.args.classes is not None: idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx pred = torch.cat([bbox, score, cls], dim=-1)[idx] # filter orig_img = orig_imgs[i] oh, ow = orig_img.shape[:2] pred[..., [0, 2]] *= ow pred[..., [1, 3]] *= oh img_path = self.batch[0][i] results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) return results def pre_transform(self, im): """ Pre-transforms the input images before feeding them into the model for inference. The input images are letterboxed to ensure a square aspect ratio and scale-filled. The size must be square(640) and scaleFilled. Args: im (list[np.ndarray] |torch.Tensor): Input images of shape (N,3,h,w) for tensor, [(h,w,3) x N] for list. Returns: (list): List of pre-transformed images ready for model inference. """ letterbox = LetterBox(self.imgsz, auto=False, scaleFill=True) return [letterbox(image=x) for x in im]