# Ultralytics YOLO 🚀, AGPL-3.0 license """ YOLO-NAS model interface. Example: ```python from ultralytics import NAS model = NAS('yolo_nas_s') results = model.predict('ultralytics/assets/bus.jpg') ``` """ from pathlib import Path import torch from ultralytics.engine.model import Model from ultralytics.utils.torch_utils import model_info, smart_inference_mode from .predict import NASPredictor from .val import NASValidator class NAS(Model): """ YOLO NAS model for object detection. This class provides an interface for the YOLO-NAS models and extends the `Model` class from Ultralytics engine. It is designed to facilitate the task of object detection using pre-trained or custom-trained YOLO-NAS models. Example: ```python from ultralytics import NAS model = NAS('yolo_nas_s') results = model.predict('ultralytics/assets/bus.jpg') ``` Attributes: model (str): Path to the pre-trained model or model name. Defaults to 'yolo_nas_s.pt'. Note: YOLO-NAS models only support pre-trained models. Do not provide YAML configuration files. """ def __init__(self, model="yolo_nas_s.pt") -> None: """Initializes the NAS model with the provided or default 'yolo_nas_s.pt' model.""" assert Path(model).suffix not in (".yaml", ".yml"), "YOLO-NAS models only support pre-trained models." super().__init__(model, task="detect") @smart_inference_mode() def _load(self, weights: str, task: str): """Loads an existing NAS model weights or creates a new NAS model with pretrained weights if not provided.""" import super_gradients suffix = Path(weights).suffix if suffix == ".pt": self.model = torch.load(weights) elif suffix == "": self.model = super_gradients.training.models.get(weights, pretrained_weights="coco") # Standardize model self.model.fuse = lambda verbose=True: self.model self.model.stride = torch.tensor([32]) self.model.names = dict(enumerate(self.model._class_names)) self.model.is_fused = lambda: False # for info() self.model.yaml = {} # for info() self.model.pt_path = weights # for export() self.model.task = "detect" # for export() def info(self, detailed=False, verbose=True): """ Logs model info. Args: detailed (bool): Show detailed information about model. verbose (bool): Controls verbosity. """ return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640) @property def task_map(self): """Returns a dictionary mapping tasks to respective predictor and validator classes.""" return {"detect": {"predictor": NASPredictor, "validator": NASValidator}}