# Ultralytics YOLO 🚀, AGPL-3.0 license """ This module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection, instance segmentation, image classification, pose estimation, and multi-object tracking. Hyperparameter tuning is the process of systematically searching for the optimal set of hyperparameters that yield the best model performance. This is particularly crucial in deep learning models like YOLO, where small changes in hyperparameters can lead to significant differences in model accuracy and efficiency. Example: Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations. ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') model.tune(data='coco8.yaml', epochs=10, iterations=300, optimizer='AdamW', plots=False, save=False, val=False) ``` """ import random import shutil import subprocess import time import numpy as np import torch from ultralytics.cfg import get_cfg, get_save_dir from ultralytics.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, remove_colorstr, yaml_print, yaml_save from ultralytics.utils.plotting import plot_tune_results class Tuner: """ Class responsible for hyperparameter tuning of YOLO models. The class evolves YOLO model hyperparameters over a given number of iterations by mutating them according to the search space and retraining the model to evaluate their performance. Attributes: space (dict): Hyperparameter search space containing bounds and scaling factors for mutation. tune_dir (Path): Directory where evolution logs and results will be saved. tune_csv (Path): Path to the CSV file where evolution logs are saved. Methods: _mutate(hyp: dict) -> dict: Mutates the given hyperparameters within the bounds specified in `self.space`. __call__(): Executes the hyperparameter evolution across multiple iterations. Example: Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations. ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') model.tune(data='coco8.yaml', epochs=10, iterations=300, optimizer='AdamW', plots=False, save=False, val=False) ``` Tune with custom search space. ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') model.tune(space={key1: val1, key2: val2}) # custom search space dictionary ``` """ def __init__(self, args=DEFAULT_CFG, _callbacks=None): """ Initialize the Tuner with configurations. Args: args (dict, optional): Configuration for hyperparameter evolution. """ self.space = args.pop("space", None) or { # key: (min, max, gain(optional)) # 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']), "lr0": (1e-5, 1e-1), # initial learning rate (i.e. SGD=1E-2, Adam=1E-3) "lrf": (0.0001, 0.1), # final OneCycleLR learning rate (lr0 * lrf) "momentum": (0.7, 0.98, 0.3), # SGD momentum/Adam beta1 "weight_decay": (0.0, 0.001), # optimizer weight decay 5e-4 "warmup_epochs": (0.0, 5.0), # warmup epochs (fractions ok) "warmup_momentum": (0.0, 0.95), # warmup initial momentum "box": (1.0, 20.0), # box loss gain "cls": (0.2, 4.0), # cls loss gain (scale with pixels) "dfl": (0.4, 6.0), # dfl loss gain "hsv_h": (0.0, 0.1), # image HSV-Hue augmentation (fraction) "hsv_s": (0.0, 0.9), # image HSV-Saturation augmentation (fraction) "hsv_v": (0.0, 0.9), # image HSV-Value augmentation (fraction) "degrees": (0.0, 45.0), # image rotation (+/- deg) "translate": (0.0, 0.9), # image translation (+/- fraction) "scale": (0.0, 0.95), # image scale (+/- gain) "shear": (0.0, 10.0), # image shear (+/- deg) "perspective": (0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 "flipud": (0.0, 1.0), # image flip up-down (probability) "fliplr": (0.0, 1.0), # image flip left-right (probability) "bgr": (0.0, 1.0), # image channel bgr (probability) "mosaic": (0.0, 1.0), # image mixup (probability) "mixup": (0.0, 1.0), # image mixup (probability) "copy_paste": (0.0, 1.0), # segment copy-paste (probability) } self.args = get_cfg(overrides=args) self.tune_dir = get_save_dir(self.args, name="tune") self.tune_csv = self.tune_dir / "tune_results.csv" self.callbacks = _callbacks or callbacks.get_default_callbacks() self.prefix = colorstr("Tuner: ") callbacks.add_integration_callbacks(self) LOGGER.info( f"{self.prefix}Initialized Tuner instance with 'tune_dir={self.tune_dir}'\n" f"{self.prefix}💡 Learn about tuning at https://docs.ultralytics.com/guides/hyperparameter-tuning" ) def _mutate(self, parent="single", n=5, mutation=0.8, sigma=0.2): """ Mutates the hyperparameters based on bounds and scaling factors specified in `self.space`. Args: parent (str): Parent selection method: 'single' or 'weighted'. n (int): Number of parents to consider. mutation (float): Probability of a parameter mutation in any given iteration. sigma (float): Standard deviation for Gaussian random number generator. Returns: (dict): A dictionary containing mutated hyperparameters. """ if self.tune_csv.exists(): # if CSV file exists: select best hyps and mutate # Select parent(s) x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1) fitness = x[:, 0] # first column n = min(n, len(x)) # number of previous results to consider x = x[np.argsort(-fitness)][:n] # top n mutations w = x[:, 0] - x[:, 0].min() + 1e-6 # weights (sum > 0) if parent == "single" or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == "weighted": x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate r = np.random # method r.seed(int(time.time())) g = np.array([v[2] if len(v) == 3 else 1.0 for k, v in self.space.items()]) # gains 0-1 ng = len(self.space) v = np.ones(ng) while all(v == 1): # mutate until a change occurs (prevent duplicates) v = (g * (r.random(ng) < mutation) * r.randn(ng) * r.random() * sigma + 1).clip(0.3, 3.0) hyp = {k: float(x[i + 1] * v[i]) for i, k in enumerate(self.space.keys())} else: hyp = {k: getattr(self.args, k) for k in self.space.keys()} # Constrain to limits for k, v in self.space.items(): hyp[k] = max(hyp[k], v[0]) # lower limit hyp[k] = min(hyp[k], v[1]) # upper limit hyp[k] = round(hyp[k], 5) # significant digits return hyp def __call__(self, model=None, iterations=10, cleanup=True): """ Executes the hyperparameter evolution process when the Tuner instance is called. This method iterates through the number of iterations, performing the following steps in each iteration: 1. Load the existing hyperparameters or initialize new ones. 2. Mutate the hyperparameters using the `mutate` method. 3. Train a YOLO model with the mutated hyperparameters. 4. Log the fitness score and mutated hyperparameters to a CSV file. Args: model (Model): A pre-initialized YOLO model to be used for training. iterations (int): The number of generations to run the evolution for. cleanup (bool): Whether to delete iteration weights to reduce storage space used during tuning. Note: The method utilizes the `self.tune_csv` Path object to read and log hyperparameters and fitness scores. Ensure this path is set correctly in the Tuner instance. """ t0 = time.time() best_save_dir, best_metrics = None, None (self.tune_dir / "weights").mkdir(parents=True, exist_ok=True) for i in range(iterations): # Mutate hyperparameters mutated_hyp = self._mutate() LOGGER.info(f"{self.prefix}Starting iteration {i + 1}/{iterations} with hyperparameters: {mutated_hyp}") metrics = {} train_args = {**vars(self.args), **mutated_hyp} save_dir = get_save_dir(get_cfg(train_args)) weights_dir = save_dir / "weights" try: # Train YOLO model with mutated hyperparameters (run in subprocess to avoid dataloader hang) cmd = ["yolo", "train", *(f"{k}={v}" for k, v in train_args.items())] return_code = subprocess.run(cmd, check=True).returncode ckpt_file = weights_dir / ("best.pt" if (weights_dir / "best.pt").exists() else "last.pt") metrics = torch.load(ckpt_file)["train_metrics"] assert return_code == 0, "training failed" except Exception as e: LOGGER.warning(f"WARNING ❌️ training failure for hyperparameter tuning iteration {i + 1}\n{e}") # Save results and mutated_hyp to CSV fitness = metrics.get("fitness", 0.0) log_row = [round(fitness, 5)] + [mutated_hyp[k] for k in self.space.keys()] headers = "" if self.tune_csv.exists() else (",".join(["fitness"] + list(self.space.keys())) + "\n") with open(self.tune_csv, "a") as f: f.write(headers + ",".join(map(str, log_row)) + "\n") # Get best results x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1) fitness = x[:, 0] # first column best_idx = fitness.argmax() best_is_current = best_idx == i if best_is_current: best_save_dir = save_dir best_metrics = {k: round(v, 5) for k, v in metrics.items()} for ckpt in weights_dir.glob("*.pt"): shutil.copy2(ckpt, self.tune_dir / "weights") elif cleanup: shutil.rmtree(ckpt_file.parent) # remove iteration weights/ dir to reduce storage space # Plot tune results plot_tune_results(self.tune_csv) # Save and print tune results header = ( f'{self.prefix}{i + 1}/{iterations} iterations complete ✅ ({time.time() - t0:.2f}s)\n' f'{self.prefix}Results saved to {colorstr("bold", self.tune_dir)}\n' f'{self.prefix}Best fitness={fitness[best_idx]} observed at iteration {best_idx + 1}\n' f'{self.prefix}Best fitness metrics are {best_metrics}\n' f'{self.prefix}Best fitness model is {best_save_dir}\n' f'{self.prefix}Best fitness hyperparameters are printed below.\n' ) LOGGER.info("\n" + header) data = {k: float(x[best_idx, i + 1]) for i, k in enumerate(self.space.keys())} yaml_save( self.tune_dir / "best_hyperparameters.yaml", data=data, header=remove_colorstr(header.replace(self.prefix, "# ")) + "\n", ) yaml_print(self.tune_dir / "best_hyperparameters.yaml")