# Ultralytics YOLO 🚀, AGPL-3.0 license from copy import copy from ultralytics.models import yolo from ultralytics.nn.tasks import PoseModel from ultralytics.utils import DEFAULT_CFG, LOGGER from ultralytics.utils.plotting import plot_images, plot_results class PoseTrainer(yolo.detect.DetectionTrainer): """ A class extending the DetectionTrainer class for training based on a pose model. Example: ```python from ultralytics.models.yolo.pose import PoseTrainer args = dict(model='yolov8n-pose.pt', data='coco8-pose.yaml', epochs=3) trainer = PoseTrainer(overrides=args) trainer.train() ``` """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """Initialize a PoseTrainer object with specified configurations and overrides.""" if overrides is None: overrides = {} overrides["task"] = "pose" super().__init__(cfg, overrides, _callbacks) if isinstance(self.args.device, str) and self.args.device.lower() == "mps": LOGGER.warning( "WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. " "See https://github.com/ultralytics/ultralytics/issues/4031." ) def get_model(self, cfg=None, weights=None, verbose=True): """Get pose estimation model with specified configuration and weights.""" model = PoseModel(cfg, ch=3, nc=self.data["nc"], data_kpt_shape=self.data["kpt_shape"], verbose=verbose) if weights: model.load(weights) return model def set_model_attributes(self): """Sets keypoints shape attribute of PoseModel.""" super().set_model_attributes() self.model.kpt_shape = self.data["kpt_shape"] def get_validator(self): """Returns an instance of the PoseValidator class for validation.""" self.loss_names = "box_loss", "pose_loss", "kobj_loss", "cls_loss", "dfl_loss" return yolo.pose.PoseValidator( self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks ) def plot_training_samples(self, batch, ni): """Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints.""" images = batch["img"] kpts = batch["keypoints"] cls = batch["cls"].squeeze(-1) bboxes = batch["bboxes"] paths = batch["im_file"] batch_idx = batch["batch_idx"] plot_images( images, batch_idx, cls, bboxes, kpts=kpts, paths=paths, fname=self.save_dir / f"train_batch{ni}.jpg", on_plot=self.on_plot, ) def plot_metrics(self): """Plots training/val metrics.""" plot_results(file=self.csv, pose=True, on_plot=self.on_plot) # save results.png