# Ultralytics YOLO 🚀, AGPL-3.0 license import torch from ultralytics.data import ClassificationDataset, build_dataloader from ultralytics.engine.validator import BaseValidator from ultralytics.utils import LOGGER from ultralytics.utils.metrics import ClassifyMetrics, ConfusionMatrix from ultralytics.utils.plotting import plot_images class ClassificationValidator(BaseValidator): """ A class extending the BaseValidator class for validation based on a classification model. Notes: - Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'. Example: ```python from ultralytics.models.yolo.classify import ClassificationValidator args = dict(model='yolov8n-cls.pt', data='imagenet10') validator = ClassificationValidator(args=args) validator() ``` """ def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): """Initializes ClassificationValidator instance with args, dataloader, save_dir, and progress bar.""" super().__init__(dataloader, save_dir, pbar, args, _callbacks) self.targets = None self.pred = None self.args.task = "classify" self.metrics = ClassifyMetrics() def get_desc(self): """Returns a formatted string summarizing classification metrics.""" return ("%22s" + "%11s" * 2) % ("classes", "top1_acc", "top5_acc") def init_metrics(self, model): """Initialize confusion matrix, class names, and top-1 and top-5 accuracy.""" self.names = model.names self.nc = len(model.names) self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf, task="classify") self.pred = [] self.targets = [] def preprocess(self, batch): """Preprocesses input batch and returns it.""" batch["img"] = batch["img"].to(self.device, non_blocking=True) batch["img"] = batch["img"].half() if self.args.half else batch["img"].float() batch["cls"] = batch["cls"].to(self.device) return batch def update_metrics(self, preds, batch): """Updates running metrics with model predictions and batch targets.""" n5 = min(len(self.names), 5) self.pred.append(preds.argsort(1, descending=True)[:, :n5]) self.targets.append(batch["cls"]) def finalize_metrics(self, *args, **kwargs): """Finalizes metrics of the model such as confusion_matrix and speed.""" self.confusion_matrix.process_cls_preds(self.pred, self.targets) if self.args.plots: for normalize in True, False: self.confusion_matrix.plot( save_dir=self.save_dir, names=self.names.values(), normalize=normalize, on_plot=self.on_plot ) self.metrics.speed = self.speed self.metrics.confusion_matrix = self.confusion_matrix self.metrics.save_dir = self.save_dir def get_stats(self): """Returns a dictionary of metrics obtained by processing targets and predictions.""" self.metrics.process(self.targets, self.pred) return self.metrics.results_dict def build_dataset(self, img_path): """Creates and returns a ClassificationDataset instance using given image path and preprocessing parameters.""" return ClassificationDataset(root=img_path, args=self.args, augment=False, prefix=self.args.split) def get_dataloader(self, dataset_path, batch_size): """Builds and returns a data loader for classification tasks with given parameters.""" dataset = self.build_dataset(dataset_path) return build_dataloader(dataset, batch_size, self.args.workers, rank=-1) def print_results(self): """Prints evaluation metrics for YOLO object detection model.""" pf = "%22s" + "%11.3g" * len(self.metrics.keys) # print format LOGGER.info(pf % ("all", self.metrics.top1, self.metrics.top5)) def plot_val_samples(self, batch, ni): """Plot validation image samples.""" plot_images( images=batch["img"], batch_idx=torch.arange(len(batch["img"])), cls=batch["cls"].view(-1), # warning: use .view(), not .squeeze() for Classify models fname=self.save_dir / f"val_batch{ni}_labels.jpg", names=self.names, on_plot=self.on_plot, ) def plot_predictions(self, batch, preds, ni): """Plots predicted bounding boxes on input images and saves the result.""" plot_images( batch["img"], batch_idx=torch.arange(len(batch["img"])), cls=torch.argmax(preds, dim=1), fname=self.save_dir / f"val_batch{ni}_pred.jpg", names=self.names, on_plot=self.on_plot, ) # pred