# Ultralytics YOLO 🚀, AGPL-3.0 license # YOLOv3-SPP object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3 # Parameters nc: 80 # number of classes depth_multiple: 1.0 # model depth multiple width_multiple: 1.0 # layer channel multiple # darknet53 backbone backbone: # [from, number, module, args] - [-1, 1, Conv, [32, 3, 1]] # 0 - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2 - [-1, 1, Bottleneck, [64]] - [-1, 1, Conv, [128, 3, 2]] # 3-P2/4 - [-1, 2, Bottleneck, [128]] - [-1, 1, Conv, [256, 3, 2]] # 5-P3/8 - [-1, 8, Bottleneck, [256]] - [-1, 1, Conv, [512, 3, 2]] # 7-P4/16 - [-1, 8, Bottleneck, [512]] - [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32 - [-1, 4, Bottleneck, [1024]] # 10 # YOLOv3-SPP head head: - [-1, 1, Bottleneck, [1024, False]] - [-1, 1, SPP, [512, [5, 9, 13]]] - [-1, 1, Conv, [1024, 3, 1]] - [-1, 1, Conv, [512, 1, 1]] - [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large) - [-2, 1, Conv, [256, 1, 1]] - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 8], 1, Concat, [1]] # cat backbone P4 - [-1, 1, Bottleneck, [512, False]] - [-1, 1, Bottleneck, [512, False]] - [-1, 1, Conv, [256, 1, 1]] - [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium) - [-2, 1, Conv, [128, 1, 1]] - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 6], 1, Concat, [1]] # cat backbone P3 - [-1, 1, Bottleneck, [256, False]] - [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small) - [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5)