# Ultralytics YOLO 🚀, AGPL-3.0 license # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail # Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/ # Example usage: yolo train data=SKU-110K.yaml # parent # ├── ultralytics # └── datasets # └── SKU-110K ← downloads here (13.6 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../datasets/SKU-110K # dataset root dir train: train.txt # train images (relative to 'path') 8219 images val: val.txt # val images (relative to 'path') 588 images test: test.txt # test images (optional) 2936 images # Classes names: 0: object # Download script/URL (optional) --------------------------------------------------------------------------------------- download: | import shutil from pathlib import Path import numpy as np import pandas as pd from tqdm import tqdm from ultralytics.utils.downloads import download from ultralytics.utils.ops import xyxy2xywh # Download dir = Path(yaml['path']) # dataset root dir parent = Path(dir.parent) # download dir urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz'] download(urls, dir=parent) # Rename directories if dir.exists(): shutil.rmtree(dir) (parent / 'SKU110K_fixed').rename(dir) # rename dir (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir # Convert labels names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv': x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations images, unique_images = x[:, 0], np.unique(x[:, 0]) with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f: f.writelines(f'./images/{s}\n' for s in unique_images) for im in tqdm(unique_images, desc=f'Converting {dir / d}'): cls = 0 # single-class dataset with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f: for r in x[images == im]: w, h = r[6], r[7] # image width, height xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label