# Ultralytics YOLO 🚀, AGPL-3.0 license import math from typing import Tuple, Type import torch from torch import Tensor, nn from ultralytics.nn.modules import MLPBlock class TwoWayTransformer(nn.Module): """ A Two-Way Transformer module that enables the simultaneous attention to both image and query points. This class serves as a specialized transformer decoder that attends to an input image using queries whose positional embedding is supplied. This is particularly useful for tasks like object detection, image segmentation, and point cloud processing. Attributes: depth (int): The number of layers in the transformer. embedding_dim (int): The channel dimension for the input embeddings. num_heads (int): The number of heads for multihead attention. mlp_dim (int): The internal channel dimension for the MLP block. layers (nn.ModuleList): The list of TwoWayAttentionBlock layers that make up the transformer. final_attn_token_to_image (Attention): The final attention layer applied from the queries to the image. norm_final_attn (nn.LayerNorm): The layer normalization applied to the final queries. """ def __init__( self, depth: int, embedding_dim: int, num_heads: int, mlp_dim: int, activation: Type[nn.Module] = nn.ReLU, attention_downsample_rate: int = 2, ) -> None: """ A transformer decoder that attends to an input image using queries whose positional embedding is supplied. Args: depth (int): number of layers in the transformer embedding_dim (int): the channel dimension for the input embeddings num_heads (int): the number of heads for multihead attention. Must divide embedding_dim mlp_dim (int): the channel dimension internal to the MLP block activation (nn.Module): the activation to use in the MLP block """ super().__init__() self.depth = depth self.embedding_dim = embedding_dim self.num_heads = num_heads self.mlp_dim = mlp_dim self.layers = nn.ModuleList() for i in range(depth): self.layers.append( TwoWayAttentionBlock( embedding_dim=embedding_dim, num_heads=num_heads, mlp_dim=mlp_dim, activation=activation, attention_downsample_rate=attention_downsample_rate, skip_first_layer_pe=(i == 0), ) ) self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) self.norm_final_attn = nn.LayerNorm(embedding_dim) def forward( self, image_embedding: Tensor, image_pe: Tensor, point_embedding: Tensor, ) -> Tuple[Tensor, Tensor]: """ Args: image_embedding (torch.Tensor): image to attend to. Should be shape B x embedding_dim x h x w for any h and w. image_pe (torch.Tensor): the positional encoding to add to the image. Must have same shape as image_embedding. point_embedding (torch.Tensor): the embedding to add to the query points. Must have shape B x N_points x embedding_dim for any N_points. Returns: (torch.Tensor): the processed point_embedding (torch.Tensor): the processed image_embedding """ # BxCxHxW -> BxHWxC == B x N_image_tokens x C bs, c, h, w = image_embedding.shape image_embedding = image_embedding.flatten(2).permute(0, 2, 1) image_pe = image_pe.flatten(2).permute(0, 2, 1) # Prepare queries queries = point_embedding keys = image_embedding # Apply transformer blocks and final layernorm for layer in self.layers: queries, keys = layer( queries=queries, keys=keys, query_pe=point_embedding, key_pe=image_pe, ) # Apply the final attention layer from the points to the image q = queries + point_embedding k = keys + image_pe attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm_final_attn(queries) return queries, keys class TwoWayAttentionBlock(nn.Module): """ An attention block that performs both self-attention and cross-attention in two directions: queries to keys and keys to queries. This block consists of four main layers: (1) self-attention on sparse inputs, (2) cross-attention of sparse inputs to dense inputs, (3) an MLP block on sparse inputs, and (4) cross-attention of dense inputs to sparse inputs. Attributes: self_attn (Attention): The self-attention layer for the queries. norm1 (nn.LayerNorm): Layer normalization following the first attention block. cross_attn_token_to_image (Attention): Cross-attention layer from queries to keys. norm2 (nn.LayerNorm): Layer normalization following the second attention block. mlp (MLPBlock): MLP block that transforms the query embeddings. norm3 (nn.LayerNorm): Layer normalization following the MLP block. norm4 (nn.LayerNorm): Layer normalization following the third attention block. cross_attn_image_to_token (Attention): Cross-attention layer from keys to queries. skip_first_layer_pe (bool): Whether to skip the positional encoding in the first layer. """ def __init__( self, embedding_dim: int, num_heads: int, mlp_dim: int = 2048, activation: Type[nn.Module] = nn.ReLU, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False, ) -> None: """ A transformer block with four layers: (1) self-attention of sparse inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp block on sparse inputs, and (4) cross attention of dense inputs to sparse inputs. Args: embedding_dim (int): the channel dimension of the embeddings num_heads (int): the number of heads in the attention layers mlp_dim (int): the hidden dimension of the mlp block activation (nn.Module): the activation of the mlp block skip_first_layer_pe (bool): skip the PE on the first layer """ super().__init__() self.self_attn = Attention(embedding_dim, num_heads) self.norm1 = nn.LayerNorm(embedding_dim) self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) self.norm2 = nn.LayerNorm(embedding_dim) self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) self.norm3 = nn.LayerNorm(embedding_dim) self.norm4 = nn.LayerNorm(embedding_dim) self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) self.skip_first_layer_pe = skip_first_layer_pe def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]: """Apply self-attention and cross-attention to queries and keys and return the processed embeddings.""" # Self attention block if self.skip_first_layer_pe: queries = self.self_attn(q=queries, k=queries, v=queries) else: q = queries + query_pe attn_out = self.self_attn(q=q, k=q, v=queries) queries = queries + attn_out queries = self.norm1(queries) # Cross attention block, tokens attending to image embedding q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm2(queries) # MLP block mlp_out = self.mlp(queries) queries = queries + mlp_out queries = self.norm3(queries) # Cross attention block, image embedding attending to tokens q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) keys = keys + attn_out keys = self.norm4(keys) return queries, keys class Attention(nn.Module): """An attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and values. """ def __init__( self, embedding_dim: int, num_heads: int, downsample_rate: int = 1, ) -> None: """ Initializes the Attention model with the given dimensions and settings. Args: embedding_dim (int): The dimensionality of the input embeddings. num_heads (int): The number of attention heads. downsample_rate (int, optional): The factor by which the internal dimensions are downsampled. Defaults to 1. Raises: AssertionError: If 'num_heads' does not evenly divide the internal dimension (embedding_dim / downsample_rate). """ super().__init__() self.embedding_dim = embedding_dim self.internal_dim = embedding_dim // downsample_rate self.num_heads = num_heads assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim." self.q_proj = nn.Linear(embedding_dim, self.internal_dim) self.k_proj = nn.Linear(embedding_dim, self.internal_dim) self.v_proj = nn.Linear(embedding_dim, self.internal_dim) self.out_proj = nn.Linear(self.internal_dim, embedding_dim) @staticmethod def _separate_heads(x: Tensor, num_heads: int) -> Tensor: """Separate the input tensor into the specified number of attention heads.""" b, n, c = x.shape x = x.reshape(b, n, num_heads, c // num_heads) return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head @staticmethod def _recombine_heads(x: Tensor) -> Tensor: """Recombine the separated attention heads into a single tensor.""" b, n_heads, n_tokens, c_per_head = x.shape x = x.transpose(1, 2) return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: """Compute the attention output given the input query, key, and value tensors.""" # Input projections q = self.q_proj(q) k = self.k_proj(k) v = self.v_proj(v) # Separate into heads q = self._separate_heads(q, self.num_heads) k = self._separate_heads(k, self.num_heads) v = self._separate_heads(v, self.num_heads) # Attention _, _, _, c_per_head = q.shape attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens attn = attn / math.sqrt(c_per_head) attn = torch.softmax(attn, dim=-1) # Get output out = attn @ v out = self._recombine_heads(out) return self.out_proj(out)