# Ultralytics YOLO 🚀, AGPL-3.0 license from typing import List, Tuple, Type import torch from torch import nn from torch.nn import functional as F from ultralytics.nn.modules import LayerNorm2d class MaskDecoder(nn.Module): """ Decoder module for generating masks and their associated quality scores, using a transformer architecture to predict masks given image and prompt embeddings. Attributes: transformer_dim (int): Channel dimension for the transformer module. transformer (nn.Module): The transformer module used for mask prediction. num_multimask_outputs (int): Number of masks to predict for disambiguating masks. iou_token (nn.Embedding): Embedding for the IoU token. num_mask_tokens (int): Number of mask tokens. mask_tokens (nn.Embedding): Embedding for the mask tokens. output_upscaling (nn.Sequential): Neural network sequence for upscaling the output. output_hypernetworks_mlps (nn.ModuleList): Hypernetwork MLPs for generating masks. iou_prediction_head (nn.Module): MLP for predicting mask quality. """ def __init__( self, *, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int = 3, activation: Type[nn.Module] = nn.GELU, iou_head_depth: int = 3, iou_head_hidden_dim: int = 256, ) -> None: """ Predicts masks given an image and prompt embeddings, using a transformer architecture. Args: transformer_dim (int): the channel dimension of the transformer module transformer (nn.Module): the transformer used to predict masks num_multimask_outputs (int): the number of masks to predict when disambiguating masks activation (nn.Module): the type of activation to use when upscaling masks iou_head_depth (int): the depth of the MLP used to predict mask quality iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality """ super().__init__() self.transformer_dim = transformer_dim self.transformer = transformer self.num_multimask_outputs = num_multimask_outputs self.iou_token = nn.Embedding(1, transformer_dim) self.num_mask_tokens = num_multimask_outputs + 1 self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) self.output_upscaling = nn.Sequential( nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), LayerNorm2d(transformer_dim // 4), activation(), nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), activation(), ) self.output_hypernetworks_mlps = nn.ModuleList( [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)] ) self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth) def forward( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Predict masks given image and prompt embeddings. Args: image_embeddings (torch.Tensor): the embeddings from the image encoder image_pe (torch.Tensor): positional encoding with the shape of image_embeddings sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs multimask_output (bool): Whether to return multiple masks or a single mask. Returns: torch.Tensor: batched predicted masks torch.Tensor: batched predictions of mask quality """ masks, iou_pred = self.predict_masks( image_embeddings=image_embeddings, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, dense_prompt_embeddings=dense_prompt_embeddings, ) # Select the correct mask or masks for output mask_slice = slice(1, None) if multimask_output else slice(0, 1) masks = masks[:, mask_slice, :, :] iou_pred = iou_pred[:, mask_slice] # Prepare output return masks, iou_pred def predict_masks( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Predicts masks. See 'forward' for more details. """ # Concatenate output tokens output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1) tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # Expand per-image data in batch direction to be per-mask src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) src = src + dense_prompt_embeddings pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) b, c, h, w = src.shape # Run the transformer hs, src = self.transformer(src, pos_src, tokens) iou_token_out = hs[:, 0, :] mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] # Upscale mask embeddings and predict masks using the mask tokens src = src.transpose(1, 2).view(b, c, h, w) upscaled_embedding = self.output_upscaling(src) hyper_in_list: List[torch.Tensor] = [ self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens) ] hyper_in = torch.stack(hyper_in_list, dim=1) b, c, h, w = upscaled_embedding.shape masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) # Generate mask quality predictions iou_pred = self.iou_prediction_head(iou_token_out) return masks, iou_pred class MLP(nn.Module): """ MLP (Multi-Layer Perceptron) model lightly adapted from https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py """ def __init__( self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, ) -> None: """ Initializes the MLP (Multi-Layer Perceptron) model. Args: input_dim (int): The dimensionality of the input features. hidden_dim (int): The dimensionality of the hidden layers. output_dim (int): The dimensionality of the output layer. num_layers (int): The number of hidden layers. sigmoid_output (bool, optional): Apply a sigmoid activation to the output layer. Defaults to False. """ super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) self.sigmoid_output = sigmoid_output def forward(self, x): """Executes feedforward within the neural network module and applies activation.""" for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) if self.sigmoid_output: x = torch.sigmoid(x) return x