# Ultralytics YOLO 🚀, AGPL-3.0 license import torch def adjust_bboxes_to_image_border(boxes, image_shape, threshold=20): """ Adjust bounding boxes to stick to image border if they are within a certain threshold. Args: boxes (torch.Tensor): (n, 4) image_shape (tuple): (height, width) threshold (int): pixel threshold Returns: adjusted_boxes (torch.Tensor): adjusted bounding boxes """ # Image dimensions h, w = image_shape # Adjust boxes boxes[boxes[:, 0] < threshold, 0] = 0 # x1 boxes[boxes[:, 1] < threshold, 1] = 0 # y1 boxes[boxes[:, 2] > w - threshold, 2] = w # x2 boxes[boxes[:, 3] > h - threshold, 3] = h # y2 return boxes def bbox_iou(box1, boxes, iou_thres=0.9, image_shape=(640, 640), raw_output=False): """ Compute the Intersection-Over-Union of a bounding box with respect to an array of other bounding boxes. Args: box1 (torch.Tensor): (4, ) boxes (torch.Tensor): (n, 4) iou_thres (float): IoU threshold image_shape (tuple): (height, width) raw_output (bool): If True, return the raw IoU values instead of the indices Returns: high_iou_indices (torch.Tensor): Indices of boxes with IoU > thres """ boxes = adjust_bboxes_to_image_border(boxes, image_shape) # Obtain coordinates for intersections x1 = torch.max(box1[0], boxes[:, 0]) y1 = torch.max(box1[1], boxes[:, 1]) x2 = torch.min(box1[2], boxes[:, 2]) y2 = torch.min(box1[3], boxes[:, 3]) # Compute the area of intersection intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0) # Compute the area of both individual boxes box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1]) box2_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) # Compute the area of union union = box1_area + box2_area - intersection # Compute the IoU iou = intersection / union # Should be shape (n, ) if raw_output: return 0 if iou.numel() == 0 else iou # return indices of boxes with IoU > thres return torch.nonzero(iou > iou_thres).flatten()