from ultralytics.models.yolo.detect import DetectionPredictor import torch from ultralytics.utils import ops from ultralytics.engine.results import Results class YOLOv10DetectionPredictor(DetectionPredictor): def postprocess(self, preds, img, orig_imgs): if isinstance(preds, dict): preds = preds["one2one"] if isinstance(preds, (list, tuple)): preds = preds[0] if preds.shape[-1] == 6: pass else: preds = preds.transpose(-1, -2) bboxes, scores, labels = ops.v10postprocess(preds, self.args.max_det, preds.shape[-1]-4) bboxes = ops.xywh2xyxy(bboxes) preds = torch.cat([bboxes, scores.unsqueeze(-1), labels.unsqueeze(-1)], dim=-1) mask = preds[..., 4] > self.args.conf if self.args.classes is not None: mask = mask & (preds[..., 5:6] == torch.tensor(self.args.classes, device=preds.device).unsqueeze(0)).any(2) preds = [p[mask[idx]] for idx, p in enumerate(preds)] if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) results = [] for i, pred in enumerate(preds): orig_img = orig_imgs[i] pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) img_path = self.batch[0][i] results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) return results