# Ultralytics YOLO 🚀, AGPL-3.0 license # YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5 # Parameters nc: 80 # number of classes scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n' # [depth, width, max_channels] n: [0.33, 0.25, 1024] s: [0.33, 0.50, 1024] m: [0.67, 0.75, 1024] l: [1.00, 1.00, 1024] x: [1.33, 1.25, 1024] # YOLOv5 v6.0 backbone backbone: # [from, number, module, args] - [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 - [-1, 3, C3, [128]] - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 - [-1, 6, C3, [256]] - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 - [-1, 9, C3, [512]] - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 - [-1, 3, C3, [1024]] - [-1, 1, SPPF, [1024, 5]] # 9 # YOLOv5 v6.0 head head: - [-1, 1, Conv, [512, 1, 1]] - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 6], 1, Concat, [1]] # cat backbone P4 - [-1, 3, C3, [512, False]] # 13 - [-1, 1, Conv, [256, 1, 1]] - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 4], 1, Concat, [1]] # cat backbone P3 - [-1, 3, C3, [256, False]] # 17 (P3/8-small) - [-1, 1, Conv, [256, 3, 2]] - [[-1, 14], 1, Concat, [1]] # cat head P4 - [-1, 3, C3, [512, False]] # 20 (P4/16-medium) - [-1, 1, Conv, [512, 3, 2]] - [[-1, 10], 1, Concat, [1]] # cat head P5 - [-1, 3, C3, [1024, False]] # 23 (P5/32-large) - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)