# Ultralytics YOLO 🚀, AGPL-3.0 license from copy import copy from ultralytics.models import yolo from ultralytics.nn.tasks import OBBModel from ultralytics.utils import DEFAULT_CFG, RANK class OBBTrainer(yolo.detect.DetectionTrainer): """ A class extending the DetectionTrainer class for training based on an Oriented Bounding Box (OBB) model. Example: ```python from ultralytics.models.yolo.obb import OBBTrainer args = dict(model='yolov8n-obb.pt', data='dota8.yaml', epochs=3) trainer = OBBTrainer(overrides=args) trainer.train() ``` """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """Initialize a OBBTrainer object with given arguments.""" if overrides is None: overrides = {} overrides["task"] = "obb" super().__init__(cfg, overrides, _callbacks) def get_model(self, cfg=None, weights=None, verbose=True): """Return OBBModel initialized with specified config and weights.""" model = OBBModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose and RANK == -1) if weights: model.load(weights) return model def get_validator(self): """Return an instance of OBBValidator for validation of YOLO model.""" self.loss_names = "box_loss", "cls_loss", "dfl_loss" return yolo.obb.OBBValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))