Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
"""Module utils.""" | |
import copy | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.init import uniform_ | |
__all__ = "multi_scale_deformable_attn_pytorch", "inverse_sigmoid" | |
def _get_clones(module, n): | |
"""Create a list of cloned modules from the given module.""" | |
return nn.ModuleList([copy.deepcopy(module) for _ in range(n)]) | |
def bias_init_with_prob(prior_prob=0.01): | |
"""Initialize conv/fc bias value according to a given probability value.""" | |
return float(-np.log((1 - prior_prob) / prior_prob)) # return bias_init | |
def linear_init(module): | |
"""Initialize the weights and biases of a linear module.""" | |
bound = 1 / math.sqrt(module.weight.shape[0]) | |
uniform_(module.weight, -bound, bound) | |
if hasattr(module, "bias") and module.bias is not None: | |
uniform_(module.bias, -bound, bound) | |
def inverse_sigmoid(x, eps=1e-5): | |
"""Calculate the inverse sigmoid function for a tensor.""" | |
x = x.clamp(min=0, max=1) | |
x1 = x.clamp(min=eps) | |
x2 = (1 - x).clamp(min=eps) | |
return torch.log(x1 / x2) | |
def multi_scale_deformable_attn_pytorch( | |
value: torch.Tensor, | |
value_spatial_shapes: torch.Tensor, | |
sampling_locations: torch.Tensor, | |
attention_weights: torch.Tensor, | |
) -> torch.Tensor: | |
""" | |
Multiscale deformable attention. | |
https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py | |
""" | |
bs, _, num_heads, embed_dims = value.shape | |
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape | |
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) | |
sampling_grids = 2 * sampling_locations - 1 | |
sampling_value_list = [] | |
for level, (H_, W_) in enumerate(value_spatial_shapes): | |
# bs, H_*W_, num_heads, embed_dims -> | |
# bs, H_*W_, num_heads*embed_dims -> | |
# bs, num_heads*embed_dims, H_*W_ -> | |
# bs*num_heads, embed_dims, H_, W_ | |
value_l_ = value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_) | |
# bs, num_queries, num_heads, num_points, 2 -> | |
# bs, num_heads, num_queries, num_points, 2 -> | |
# bs*num_heads, num_queries, num_points, 2 | |
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1) | |
# bs*num_heads, embed_dims, num_queries, num_points | |
sampling_value_l_ = F.grid_sample( | |
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False | |
) | |
sampling_value_list.append(sampling_value_l_) | |
# (bs, num_queries, num_heads, num_levels, num_points) -> | |
# (bs, num_heads, num_queries, num_levels, num_points) -> | |
# (bs, num_heads, 1, num_queries, num_levels*num_points) | |
attention_weights = attention_weights.transpose(1, 2).reshape( | |
bs * num_heads, 1, num_queries, num_levels * num_points | |
) | |
output = ( | |
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights) | |
.sum(-1) | |
.view(bs, num_heads * embed_dims, num_queries) | |
) | |
return output.transpose(1, 2).contiguous() | |