Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import torch | |
from ultralytics.models.yolo.detect import DetectionValidator | |
from ultralytics.utils import ops | |
__all__ = ["NASValidator"] | |
class NASValidator(DetectionValidator): | |
""" | |
Ultralytics YOLO NAS Validator for object detection. | |
Extends `DetectionValidator` from the Ultralytics models package and is designed to post-process the raw predictions | |
generated by YOLO NAS models. It performs non-maximum suppression to remove overlapping and low-confidence boxes, | |
ultimately producing the final detections. | |
Attributes: | |
args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU thresholds. | |
lb (torch.Tensor): Optional tensor for multilabel NMS. | |
Example: | |
```python | |
from ultralytics import NAS | |
model = NAS('yolo_nas_s') | |
validator = model.validator | |
# Assumes that raw_preds are available | |
final_preds = validator.postprocess(raw_preds) | |
``` | |
Note: | |
This class is generally not instantiated directly but is used internally within the `NAS` class. | |
""" | |
def postprocess(self, preds_in): | |
"""Apply Non-maximum suppression to prediction outputs.""" | |
boxes = ops.xyxy2xywh(preds_in[0][0]) | |
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) | |
return ops.non_max_suppression( | |
preds, | |
self.args.conf, | |
self.args.iou, | |
labels=self.lb, | |
multi_label=False, | |
agnostic=self.args.single_cls, | |
max_det=self.args.max_det, | |
max_time_img=0.5, | |
) | |