Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
""" | |
Check a model's accuracy on a test or val split of a dataset. | |
Usage: | |
$ yolo mode=val model=yolov8n.pt data=coco128.yaml imgsz=640 | |
Usage - formats: | |
$ yolo mode=val model=yolov8n.pt # PyTorch | |
yolov8n.torchscript # TorchScript | |
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True | |
yolov8n_openvino_model # OpenVINO | |
yolov8n.engine # TensorRT | |
yolov8n.mlpackage # CoreML (macOS-only) | |
yolov8n_saved_model # TensorFlow SavedModel | |
yolov8n.pb # TensorFlow GraphDef | |
yolov8n.tflite # TensorFlow Lite | |
yolov8n_edgetpu.tflite # TensorFlow Edge TPU | |
yolov8n_paddle_model # PaddlePaddle | |
yolov8n_ncnn_model # NCNN | |
""" | |
import json | |
import time | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from ultralytics.cfg import get_cfg, get_save_dir | |
from ultralytics.data.utils import check_cls_dataset, check_det_dataset | |
from ultralytics.nn.autobackend import AutoBackend | |
from ultralytics.utils import LOGGER, TQDM, callbacks, colorstr, emojis | |
from ultralytics.utils.checks import check_imgsz | |
from ultralytics.utils.ops import Profile | |
from ultralytics.utils.torch_utils import de_parallel, select_device, smart_inference_mode | |
class BaseValidator: | |
""" | |
BaseValidator. | |
A base class for creating validators. | |
Attributes: | |
args (SimpleNamespace): Configuration for the validator. | |
dataloader (DataLoader): Dataloader to use for validation. | |
pbar (tqdm): Progress bar to update during validation. | |
model (nn.Module): Model to validate. | |
data (dict): Data dictionary. | |
device (torch.device): Device to use for validation. | |
batch_i (int): Current batch index. | |
training (bool): Whether the model is in training mode. | |
names (dict): Class names. | |
seen: Records the number of images seen so far during validation. | |
stats: Placeholder for statistics during validation. | |
confusion_matrix: Placeholder for a confusion matrix. | |
nc: Number of classes. | |
iouv: (torch.Tensor): IoU thresholds from 0.50 to 0.95 in spaces of 0.05. | |
jdict (dict): Dictionary to store JSON validation results. | |
speed (dict): Dictionary with keys 'preprocess', 'inference', 'loss', 'postprocess' and their respective | |
batch processing times in milliseconds. | |
save_dir (Path): Directory to save results. | |
plots (dict): Dictionary to store plots for visualization. | |
callbacks (dict): Dictionary to store various callback functions. | |
""" | |
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): | |
""" | |
Initializes a BaseValidator instance. | |
Args: | |
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation. | |
save_dir (Path, optional): Directory to save results. | |
pbar (tqdm.tqdm): Progress bar for displaying progress. | |
args (SimpleNamespace): Configuration for the validator. | |
_callbacks (dict): Dictionary to store various callback functions. | |
""" | |
self.args = get_cfg(overrides=args) | |
self.dataloader = dataloader | |
self.pbar = pbar | |
self.stride = None | |
self.data = None | |
self.device = None | |
self.batch_i = None | |
self.training = True | |
self.names = None | |
self.seen = None | |
self.stats = None | |
self.confusion_matrix = None | |
self.nc = None | |
self.iouv = None | |
self.jdict = None | |
self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0} | |
self.save_dir = save_dir or get_save_dir(self.args) | |
(self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) | |
if self.args.conf is None: | |
self.args.conf = 0.001 # default conf=0.001 | |
self.args.imgsz = check_imgsz(self.args.imgsz, max_dim=1) | |
self.plots = {} | |
self.callbacks = _callbacks or callbacks.get_default_callbacks() | |
def __call__(self, trainer=None, model=None): | |
"""Supports validation of a pre-trained model if passed or a model being trained if trainer is passed (trainer | |
gets priority). | |
""" | |
self.training = trainer is not None | |
augment = self.args.augment and (not self.training) | |
if self.training: | |
self.device = trainer.device | |
self.data = trainer.data | |
# self.args.half = self.device.type != "cpu" # force FP16 val during training | |
model = trainer.ema.ema or trainer.model | |
model = model.half() if self.args.half else model.float() | |
# self.model = model | |
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device) | |
self.args.plots &= trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1) | |
model.eval() | |
else: | |
callbacks.add_integration_callbacks(self) | |
model = AutoBackend( | |
weights=model or self.args.model, | |
device=select_device(self.args.device, self.args.batch), | |
dnn=self.args.dnn, | |
data=self.args.data, | |
fp16=self.args.half, | |
) | |
# self.model = model | |
self.device = model.device # update device | |
self.args.half = model.fp16 # update half | |
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine | |
imgsz = check_imgsz(self.args.imgsz, stride=stride) | |
if engine: | |
self.args.batch = model.batch_size | |
elif not pt and not jit: | |
self.args.batch = 1 # export.py models default to batch-size 1 | |
LOGGER.info(f"Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models") | |
if str(self.args.data).split(".")[-1] in ("yaml", "yml"): | |
self.data = check_det_dataset(self.args.data) | |
elif self.args.task == "classify": | |
self.data = check_cls_dataset(self.args.data, split=self.args.split) | |
else: | |
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found β")) | |
if self.device.type in ("cpu", "mps"): | |
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading | |
if not pt: | |
self.args.rect = False | |
self.stride = model.stride # used in get_dataloader() for padding | |
self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch) | |
model.eval() | |
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup | |
self.run_callbacks("on_val_start") | |
dt = ( | |
Profile(device=self.device), | |
Profile(device=self.device), | |
Profile(device=self.device), | |
Profile(device=self.device), | |
) | |
bar = TQDM(self.dataloader, desc=self.get_desc(), total=len(self.dataloader)) | |
self.init_metrics(de_parallel(model)) | |
self.jdict = [] # empty before each val | |
for batch_i, batch in enumerate(bar): | |
self.run_callbacks("on_val_batch_start") | |
self.batch_i = batch_i | |
# Preprocess | |
with dt[0]: | |
batch = self.preprocess(batch) | |
# Inference | |
with dt[1]: | |
preds = model(batch["img"], augment=augment) | |
# Loss | |
with dt[2]: | |
if self.training: | |
self.loss += model.loss(batch, preds)[1] | |
# Postprocess | |
with dt[3]: | |
preds = self.postprocess(preds) | |
self.update_metrics(preds, batch) | |
if self.args.plots and batch_i < 3: | |
self.plot_val_samples(batch, batch_i) | |
self.plot_predictions(batch, preds, batch_i) | |
self.run_callbacks("on_val_batch_end") | |
stats = self.get_stats() | |
self.check_stats(stats) | |
self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1e3 for x in dt))) | |
self.finalize_metrics() | |
if not (self.args.save_json and self.is_coco and len(self.jdict)): | |
self.print_results() | |
self.run_callbacks("on_val_end") | |
if self.training: | |
model.float() | |
if self.args.save_json and self.jdict: | |
with open(str(self.save_dir / "predictions.json"), "w") as f: | |
LOGGER.info(f"Saving {f.name}...") | |
json.dump(self.jdict, f) # flatten and save | |
stats = self.eval_json(stats) # update stats | |
stats['fitness'] = stats['metrics/mAP50-95(B)'] | |
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")} | |
return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats | |
else: | |
LOGGER.info( | |
"Speed: %.1fms preprocess, %.1fms inference, %.1fms loss, %.1fms postprocess per image" | |
% tuple(self.speed.values()) | |
) | |
if self.args.save_json and self.jdict: | |
with open(str(self.save_dir / "predictions.json"), "w") as f: | |
LOGGER.info(f"Saving {f.name}...") | |
json.dump(self.jdict, f) # flatten and save | |
stats = self.eval_json(stats) # update stats | |
if self.args.plots or self.args.save_json: | |
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}") | |
return stats | |
def match_predictions(self, pred_classes, true_classes, iou, use_scipy=False): | |
""" | |
Matches predictions to ground truth objects (pred_classes, true_classes) using IoU. | |
Args: | |
pred_classes (torch.Tensor): Predicted class indices of shape(N,). | |
true_classes (torch.Tensor): Target class indices of shape(M,). | |
iou (torch.Tensor): An NxM tensor containing the pairwise IoU values for predictions and ground of truth | |
use_scipy (bool): Whether to use scipy for matching (more precise). | |
Returns: | |
(torch.Tensor): Correct tensor of shape(N,10) for 10 IoU thresholds. | |
""" | |
# Dx10 matrix, where D - detections, 10 - IoU thresholds | |
correct = np.zeros((pred_classes.shape[0], self.iouv.shape[0])).astype(bool) | |
# LxD matrix where L - labels (rows), D - detections (columns) | |
correct_class = true_classes[:, None] == pred_classes | |
iou = iou * correct_class # zero out the wrong classes | |
iou = iou.cpu().numpy() | |
for i, threshold in enumerate(self.iouv.cpu().tolist()): | |
if use_scipy: | |
# WARNING: known issue that reduces mAP in https://github.com/ultralytics/ultralytics/pull/4708 | |
import scipy # scope import to avoid importing for all commands | |
cost_matrix = iou * (iou >= threshold) | |
if cost_matrix.any(): | |
labels_idx, detections_idx = scipy.optimize.linear_sum_assignment(cost_matrix, maximize=True) | |
valid = cost_matrix[labels_idx, detections_idx] > 0 | |
if valid.any(): | |
correct[detections_idx[valid], i] = True | |
else: | |
matches = np.nonzero(iou >= threshold) # IoU > threshold and classes match | |
matches = np.array(matches).T | |
if matches.shape[0]: | |
if matches.shape[0] > 1: | |
matches = matches[iou[matches[:, 0], matches[:, 1]].argsort()[::-1]] | |
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] | |
# matches = matches[matches[:, 2].argsort()[::-1]] | |
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] | |
correct[matches[:, 1].astype(int), i] = True | |
return torch.tensor(correct, dtype=torch.bool, device=pred_classes.device) | |
def add_callback(self, event: str, callback): | |
"""Appends the given callback.""" | |
self.callbacks[event].append(callback) | |
def run_callbacks(self, event: str): | |
"""Runs all callbacks associated with a specified event.""" | |
for callback in self.callbacks.get(event, []): | |
callback(self) | |
def get_dataloader(self, dataset_path, batch_size): | |
"""Get data loader from dataset path and batch size.""" | |
raise NotImplementedError("get_dataloader function not implemented for this validator") | |
def build_dataset(self, img_path): | |
"""Build dataset.""" | |
raise NotImplementedError("build_dataset function not implemented in validator") | |
def preprocess(self, batch): | |
"""Preprocesses an input batch.""" | |
return batch | |
def postprocess(self, preds): | |
"""Describes and summarizes the purpose of 'postprocess()' but no details mentioned.""" | |
return preds | |
def init_metrics(self, model): | |
"""Initialize performance metrics for the YOLO model.""" | |
pass | |
def update_metrics(self, preds, batch): | |
"""Updates metrics based on predictions and batch.""" | |
pass | |
def finalize_metrics(self, *args, **kwargs): | |
"""Finalizes and returns all metrics.""" | |
pass | |
def get_stats(self): | |
"""Returns statistics about the model's performance.""" | |
return {} | |
def check_stats(self, stats): | |
"""Checks statistics.""" | |
pass | |
def print_results(self): | |
"""Prints the results of the model's predictions.""" | |
pass | |
def get_desc(self): | |
"""Get description of the YOLO model.""" | |
pass | |
def metric_keys(self): | |
"""Returns the metric keys used in YOLO training/validation.""" | |
return [] | |
def on_plot(self, name, data=None): | |
"""Registers plots (e.g. to be consumed in callbacks)""" | |
self.plots[Path(name)] = {"data": data, "timestamp": time.time()} | |
# TODO: may need to put these following functions into callback | |
def plot_val_samples(self, batch, ni): | |
"""Plots validation samples during training.""" | |
pass | |
def plot_predictions(self, batch, preds, ni): | |
"""Plots YOLO model predictions on batch images.""" | |
pass | |
def pred_to_json(self, preds, batch): | |
"""Convert predictions to JSON format.""" | |
pass | |
def eval_json(self, stats): | |
"""Evaluate and return JSON format of prediction statistics.""" | |
pass | |