Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
""" | |
Train a model on a dataset. | |
Usage: | |
$ yolo mode=train model=yolov8n.pt data=coco128.yaml imgsz=640 epochs=100 batch=16 | |
""" | |
import math | |
import os | |
import subprocess | |
import time | |
import warnings | |
from copy import deepcopy | |
from datetime import datetime, timedelta | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from torch import distributed as dist | |
from torch import nn, optim | |
from ultralytics.cfg import get_cfg, get_save_dir | |
from ultralytics.data.utils import check_cls_dataset, check_det_dataset | |
from ultralytics.nn.tasks import attempt_load_one_weight, attempt_load_weights | |
from ultralytics.utils import ( | |
DEFAULT_CFG, | |
LOGGER, | |
RANK, | |
TQDM, | |
__version__, | |
callbacks, | |
clean_url, | |
colorstr, | |
emojis, | |
yaml_save, | |
) | |
from ultralytics.utils.autobatch import check_train_batch_size | |
from ultralytics.utils.checks import check_amp, check_file, check_imgsz, check_model_file_from_stem, print_args | |
from ultralytics.utils.dist import ddp_cleanup, generate_ddp_command | |
from ultralytics.utils.files import get_latest_run | |
from ultralytics.utils.torch_utils import ( | |
EarlyStopping, | |
ModelEMA, | |
de_parallel, | |
init_seeds, | |
one_cycle, | |
select_device, | |
strip_optimizer, | |
) | |
class BaseTrainer: | |
""" | |
BaseTrainer. | |
A base class for creating trainers. | |
Attributes: | |
args (SimpleNamespace): Configuration for the trainer. | |
validator (BaseValidator): Validator instance. | |
model (nn.Module): Model instance. | |
callbacks (defaultdict): Dictionary of callbacks. | |
save_dir (Path): Directory to save results. | |
wdir (Path): Directory to save weights. | |
last (Path): Path to the last checkpoint. | |
best (Path): Path to the best checkpoint. | |
save_period (int): Save checkpoint every x epochs (disabled if < 1). | |
batch_size (int): Batch size for training. | |
epochs (int): Number of epochs to train for. | |
start_epoch (int): Starting epoch for training. | |
device (torch.device): Device to use for training. | |
amp (bool): Flag to enable AMP (Automatic Mixed Precision). | |
scaler (amp.GradScaler): Gradient scaler for AMP. | |
data (str): Path to data. | |
trainset (torch.utils.data.Dataset): Training dataset. | |
testset (torch.utils.data.Dataset): Testing dataset. | |
ema (nn.Module): EMA (Exponential Moving Average) of the model. | |
resume (bool): Resume training from a checkpoint. | |
lf (nn.Module): Loss function. | |
scheduler (torch.optim.lr_scheduler._LRScheduler): Learning rate scheduler. | |
best_fitness (float): The best fitness value achieved. | |
fitness (float): Current fitness value. | |
loss (float): Current loss value. | |
tloss (float): Total loss value. | |
loss_names (list): List of loss names. | |
csv (Path): Path to results CSV file. | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
""" | |
Initializes the BaseTrainer class. | |
Args: | |
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. | |
overrides (dict, optional): Configuration overrides. Defaults to None. | |
""" | |
self.args = get_cfg(cfg, overrides) | |
self.check_resume(overrides) | |
self.device = select_device(self.args.device, self.args.batch) | |
self.validator = None | |
self.metrics = None | |
self.plots = {} | |
init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic) | |
# Dirs | |
self.save_dir = get_save_dir(self.args) | |
self.args.name = self.save_dir.name # update name for loggers | |
self.wdir = self.save_dir / "weights" # weights dir | |
if RANK in (-1, 0): | |
self.wdir.mkdir(parents=True, exist_ok=True) # make dir | |
self.args.save_dir = str(self.save_dir) | |
yaml_save(self.save_dir / "args.yaml", vars(self.args)) # save run args | |
self.last, self.best = self.wdir / "last.pt", self.wdir / "best.pt" # checkpoint paths | |
self.save_period = self.args.save_period | |
self.batch_size = self.args.batch | |
self.epochs = self.args.epochs | |
self.start_epoch = 0 | |
if RANK == -1: | |
print_args(vars(self.args)) | |
# Device | |
if self.device.type in ("cpu", "mps"): | |
self.args.workers = 0 # faster CPU training as time dominated by inference, not dataloading | |
# Model and Dataset | |
self.model = check_model_file_from_stem(self.args.model) # add suffix, i.e. yolov8n -> yolov8n.pt | |
try: | |
if self.args.task == "classify": | |
self.data = check_cls_dataset(self.args.data) | |
elif self.args.data.split(".")[-1] in ("yaml", "yml") or self.args.task in ( | |
"detect", | |
"segment", | |
"pose", | |
"obb", | |
): | |
self.data = check_det_dataset(self.args.data) | |
if "yaml_file" in self.data: | |
self.args.data = self.data["yaml_file"] # for validating 'yolo train data=url.zip' usage | |
except Exception as e: | |
raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error β {e}")) from e | |
self.trainset, self.testset = self.get_dataset(self.data) | |
self.ema = None | |
# Optimization utils init | |
self.lf = None | |
self.scheduler = None | |
# Epoch level metrics | |
self.best_fitness = None | |
self.fitness = None | |
self.loss = None | |
self.tloss = None | |
self.loss_names = ["Loss"] | |
self.csv = self.save_dir / "results.csv" | |
self.plot_idx = [0, 1, 2] | |
# Callbacks | |
self.callbacks = _callbacks or callbacks.get_default_callbacks() | |
if RANK in (-1, 0): | |
callbacks.add_integration_callbacks(self) | |
def add_callback(self, event: str, callback): | |
"""Appends the given callback.""" | |
self.callbacks[event].append(callback) | |
def set_callback(self, event: str, callback): | |
"""Overrides the existing callbacks with the given callback.""" | |
self.callbacks[event] = [callback] | |
def run_callbacks(self, event: str): | |
"""Run all existing callbacks associated with a particular event.""" | |
for callback in self.callbacks.get(event, []): | |
callback(self) | |
def train(self): | |
"""Allow device='', device=None on Multi-GPU systems to default to device=0.""" | |
if isinstance(self.args.device, str) and len(self.args.device): # i.e. device='0' or device='0,1,2,3' | |
world_size = len(self.args.device.split(",")) | |
elif isinstance(self.args.device, (tuple, list)): # i.e. device=[0, 1, 2, 3] (multi-GPU from CLI is list) | |
world_size = len(self.args.device) | |
elif torch.cuda.is_available(): # i.e. device=None or device='' or device=number | |
world_size = 1 # default to device 0 | |
else: # i.e. device='cpu' or 'mps' | |
world_size = 0 | |
# Run subprocess if DDP training, else train normally | |
if world_size > 1 and "LOCAL_RANK" not in os.environ: | |
# Argument checks | |
if self.args.rect: | |
LOGGER.warning("WARNING β οΈ 'rect=True' is incompatible with Multi-GPU training, setting 'rect=False'") | |
self.args.rect = False | |
if self.args.batch == -1: | |
LOGGER.warning( | |
"WARNING β οΈ 'batch=-1' for AutoBatch is incompatible with Multi-GPU training, setting " | |
"default 'batch=16'" | |
) | |
self.args.batch = 16 | |
# Command | |
cmd, file = generate_ddp_command(world_size, self) | |
try: | |
LOGGER.info(f'{colorstr("DDP:")} debug command {" ".join(cmd)}') | |
subprocess.run(cmd, check=True) | |
except Exception as e: | |
raise e | |
finally: | |
ddp_cleanup(self, str(file)) | |
else: | |
self._do_train(world_size) | |
def _setup_scheduler(self): | |
"""Initialize training learning rate scheduler.""" | |
if self.args.cos_lr: | |
self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf'] | |
else: | |
self.lf = lambda x: max(1 - x / self.epochs, 0) * (1.0 - self.args.lrf) + self.args.lrf # linear | |
self.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf) | |
def _setup_ddp(self, world_size): | |
"""Initializes and sets the DistributedDataParallel parameters for training.""" | |
torch.cuda.set_device(RANK) | |
self.device = torch.device("cuda", RANK) | |
# LOGGER.info(f'DDP info: RANK {RANK}, WORLD_SIZE {world_size}, DEVICE {self.device}') | |
os.environ["NCCL_BLOCKING_WAIT"] = "1" # set to enforce timeout | |
dist.init_process_group( | |
backend="nccl" if dist.is_nccl_available() else "gloo", | |
timeout=timedelta(seconds=10800), # 3 hours | |
rank=RANK, | |
world_size=world_size, | |
) | |
def _setup_train(self, world_size): | |
"""Builds dataloaders and optimizer on correct rank process.""" | |
# Model | |
self.run_callbacks("on_pretrain_routine_start") | |
ckpt = self.setup_model() | |
self.model = self.model.to(self.device) | |
self.set_model_attributes() | |
# Freeze layers | |
freeze_list = ( | |
self.args.freeze | |
if isinstance(self.args.freeze, list) | |
else range(self.args.freeze) | |
if isinstance(self.args.freeze, int) | |
else [] | |
) | |
always_freeze_names = [".dfl"] # always freeze these layers | |
freeze_layer_names = [f"model.{x}." for x in freeze_list] + always_freeze_names | |
for k, v in self.model.named_parameters(): | |
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results) | |
if any(x in k for x in freeze_layer_names): | |
LOGGER.info(f"Freezing layer '{k}'") | |
v.requires_grad = False | |
elif not v.requires_grad and v.dtype.is_floating_point: # only floating point Tensor can require gradients | |
LOGGER.info( | |
f"WARNING β οΈ setting 'requires_grad=True' for frozen layer '{k}'. " | |
"See ultralytics.engine.trainer for customization of frozen layers." | |
) | |
v.requires_grad = True | |
# Check AMP | |
self.amp = torch.tensor(self.args.amp).to(self.device) # True or False | |
if self.amp and RANK in (-1, 0): # Single-GPU and DDP | |
callbacks_backup = callbacks.default_callbacks.copy() # backup callbacks as check_amp() resets them | |
self.amp = torch.tensor(check_amp(self.model), device=self.device) | |
callbacks.default_callbacks = callbacks_backup # restore callbacks | |
if RANK > -1 and world_size > 1: # DDP | |
dist.broadcast(self.amp, src=0) # broadcast the tensor from rank 0 to all other ranks (returns None) | |
self.amp = bool(self.amp) # as boolean | |
self.scaler = torch.cuda.amp.GradScaler(enabled=self.amp) | |
if world_size > 1: | |
self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[RANK]) | |
# Check imgsz | |
gs = max(int(self.model.stride.max() if hasattr(self.model, "stride") else 32), 32) # grid size (max stride) | |
self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1) | |
self.stride = gs # for multiscale training | |
# Batch size | |
if self.batch_size == -1 and RANK == -1: # single-GPU only, estimate best batch size | |
self.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp) | |
# Dataloaders | |
batch_size = self.batch_size // max(world_size, 1) | |
self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode="train") | |
if RANK in (-1, 0): | |
# Note: When training DOTA dataset, double batch size could get OOM on images with >2000 objects. | |
self.test_loader = self.get_dataloader( | |
self.testset, batch_size=batch_size if self.args.task == "obb" else batch_size * 2, rank=-1, mode="val" | |
) | |
self.validator = self.get_validator() | |
metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix="val") | |
self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) | |
self.ema = ModelEMA(self.model) | |
if self.args.plots: | |
self.plot_training_labels() | |
# Optimizer | |
self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing | |
weight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs # scale weight_decay | |
iterations = math.ceil(len(self.train_loader.dataset) / max(self.batch_size, self.args.nbs)) * self.epochs | |
self.optimizer = self.build_optimizer( | |
model=self.model, | |
name=self.args.optimizer, | |
lr=self.args.lr0, | |
momentum=self.args.momentum, | |
decay=weight_decay, | |
iterations=iterations, | |
) | |
# Scheduler | |
self._setup_scheduler() | |
self.stopper, self.stop = EarlyStopping(patience=self.args.patience), False | |
self.resume_training(ckpt) | |
self.scheduler.last_epoch = self.start_epoch - 1 # do not move | |
self.run_callbacks("on_pretrain_routine_end") | |
def _do_train(self, world_size=1): | |
"""Train completed, evaluate and plot if specified by arguments.""" | |
if world_size > 1: | |
self._setup_ddp(world_size) | |
self._setup_train(world_size) | |
nb = len(self.train_loader) # number of batches | |
nw = max(round(self.args.warmup_epochs * nb), 100) if self.args.warmup_epochs > 0 else -1 # warmup iterations | |
last_opt_step = -1 | |
self.epoch_time = None | |
self.epoch_time_start = time.time() | |
self.train_time_start = time.time() | |
self.run_callbacks("on_train_start") | |
LOGGER.info( | |
f'Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n' | |
f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n' | |
f"Logging results to {colorstr('bold', self.save_dir)}\n" | |
f'Starting training for ' + (f"{self.args.time} hours..." if self.args.time else f"{self.epochs} epochs...") | |
) | |
if self.args.close_mosaic: | |
base_idx = (self.epochs - self.args.close_mosaic) * nb | |
self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2]) | |
epoch = self.start_epoch | |
while True: | |
self.epoch = epoch | |
self.run_callbacks("on_train_epoch_start") | |
self.model.train() | |
if RANK != -1: | |
self.train_loader.sampler.set_epoch(epoch) | |
pbar = enumerate(self.train_loader) | |
# Update dataloader attributes (optional) | |
if epoch == (self.epochs - self.args.close_mosaic): | |
self._close_dataloader_mosaic() | |
self.train_loader.reset() | |
if RANK in (-1, 0): | |
LOGGER.info(self.progress_string()) | |
pbar = TQDM(enumerate(self.train_loader), total=nb) | |
self.tloss = None | |
self.optimizer.zero_grad() | |
for i, batch in pbar: | |
self.run_callbacks("on_train_batch_start") | |
# Warmup | |
ni = i + nb * epoch | |
if ni <= nw: | |
xi = [0, nw] # x interp | |
self.accumulate = max(1, int(np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round())) | |
for j, x in enumerate(self.optimizer.param_groups): | |
# Bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 | |
x["lr"] = np.interp( | |
ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x["initial_lr"] * self.lf(epoch)] | |
) | |
if "momentum" in x: | |
x["momentum"] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum]) | |
# Forward | |
with torch.cuda.amp.autocast(self.amp): | |
batch = self.preprocess_batch(batch) | |
self.loss, self.loss_items = self.model(batch) | |
if RANK != -1: | |
self.loss *= world_size | |
self.tloss = ( | |
(self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None else self.loss_items | |
) | |
# Backward | |
self.scaler.scale(self.loss).backward() | |
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html | |
if ni - last_opt_step >= self.accumulate: | |
self.optimizer_step() | |
last_opt_step = ni | |
# Timed stopping | |
if self.args.time: | |
self.stop = (time.time() - self.train_time_start) > (self.args.time * 3600) | |
if RANK != -1: # if DDP training | |
broadcast_list = [self.stop if RANK == 0 else None] | |
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks | |
self.stop = broadcast_list[0] | |
if self.stop: # training time exceeded | |
break | |
# Log | |
mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB) | |
loss_len = self.tloss.shape[0] if len(self.tloss.shape) else 1 | |
losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0) | |
if RANK in (-1, 0): | |
pbar.set_description( | |
("%11s" * 2 + "%11.4g" * (2 + loss_len)) | |
% (f"{epoch + 1}/{self.epochs}", mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1]) | |
) | |
self.run_callbacks("on_batch_end") | |
if self.args.plots and ni in self.plot_idx: | |
self.plot_training_samples(batch, ni) | |
self.run_callbacks("on_train_batch_end") | |
self.lr = {f"lr/pg{ir}": x["lr"] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers | |
self.run_callbacks("on_train_epoch_end") | |
if RANK in (-1, 0): | |
final_epoch = epoch + 1 == self.epochs | |
self.ema.update_attr(self.model, include=["yaml", "nc", "args", "names", "stride", "class_weights"]) | |
# Validation | |
if (self.args.val and (((epoch+1) % self.args.val_period == 0) or (self.epochs - epoch) <= 10)) \ | |
or final_epoch or self.stopper.possible_stop or self.stop: | |
self.metrics, self.fitness = self.validate() | |
self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr}) | |
self.stop |= self.stopper(epoch + 1, self.fitness) or final_epoch | |
if self.args.time: | |
self.stop |= (time.time() - self.train_time_start) > (self.args.time * 3600) | |
# Save model | |
if self.args.save or final_epoch: | |
self.save_model() | |
self.run_callbacks("on_model_save") | |
# Scheduler | |
t = time.time() | |
self.epoch_time = t - self.epoch_time_start | |
self.epoch_time_start = t | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") # suppress 'Detected lr_scheduler.step() before optimizer.step()' | |
if self.args.time: | |
mean_epoch_time = (t - self.train_time_start) / (epoch - self.start_epoch + 1) | |
self.epochs = self.args.epochs = math.ceil(self.args.time * 3600 / mean_epoch_time) | |
self._setup_scheduler() | |
self.scheduler.last_epoch = self.epoch # do not move | |
self.stop |= epoch >= self.epochs # stop if exceeded epochs | |
self.scheduler.step() | |
self.run_callbacks("on_fit_epoch_end") | |
torch.cuda.empty_cache() # clear GPU memory at end of epoch, may help reduce CUDA out of memory errors | |
# Early Stopping | |
if RANK != -1: # if DDP training | |
broadcast_list = [self.stop if RANK == 0 else None] | |
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks | |
self.stop = broadcast_list[0] | |
if self.stop: | |
break # must break all DDP ranks | |
epoch += 1 | |
if RANK in (-1, 0): | |
# Do final val with best.pt | |
LOGGER.info( | |
f"\n{epoch - self.start_epoch + 1} epochs completed in " | |
f"{(time.time() - self.train_time_start) / 3600:.3f} hours." | |
) | |
self.final_eval() | |
if self.args.plots: | |
self.plot_metrics() | |
self.run_callbacks("on_train_end") | |
torch.cuda.empty_cache() | |
self.run_callbacks("teardown") | |
def save_model(self): | |
"""Save model training checkpoints with additional metadata.""" | |
import pandas as pd # scope for faster startup | |
metrics = {**self.metrics, **{"fitness": self.fitness}} | |
results = {k.strip(): v for k, v in pd.read_csv(self.csv).to_dict(orient="list").items()} | |
ckpt = { | |
"epoch": self.epoch, | |
"best_fitness": self.best_fitness, | |
"model": deepcopy(de_parallel(self.model)).half(), | |
"ema": deepcopy(self.ema.ema).half(), | |
"updates": self.ema.updates, | |
"optimizer": self.optimizer.state_dict(), | |
"train_args": vars(self.args), # save as dict | |
"train_metrics": metrics, | |
"train_results": results, | |
"date": datetime.now().isoformat(), | |
"version": __version__, | |
"license": "AGPL-3.0 (https://ultralytics.com/license)", | |
"docs": "https://docs.ultralytics.com", | |
} | |
# Save last and best | |
torch.save(ckpt, self.last) | |
if self.best_fitness == self.fitness: | |
torch.save(ckpt, self.best) | |
if (self.save_period > 0) and (self.epoch > 0) and (self.epoch % self.save_period == 0): | |
torch.save(ckpt, self.wdir / f"epoch{self.epoch}.pt") | |
def get_dataset(data): | |
""" | |
Get train, val path from data dict if it exists. | |
Returns None if data format is not recognized. | |
""" | |
return data["train"], data.get("val") or data.get("test") | |
def setup_model(self): | |
"""Load/create/download model for any task.""" | |
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed | |
return | |
model, weights = self.model, None | |
ckpt = None | |
if str(model).endswith(".pt"): | |
weights, ckpt = attempt_load_one_weight(model) | |
cfg = ckpt["model"].yaml | |
else: | |
cfg = model | |
self.model = self.get_model(cfg=cfg, weights=weights, verbose=RANK == -1) # calls Model(cfg, weights) | |
return ckpt | |
def optimizer_step(self): | |
"""Perform a single step of the training optimizer with gradient clipping and EMA update.""" | |
self.scaler.unscale_(self.optimizer) # unscale gradients | |
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients | |
self.scaler.step(self.optimizer) | |
self.scaler.update() | |
self.optimizer.zero_grad() | |
if self.ema: | |
self.ema.update(self.model) | |
def preprocess_batch(self, batch): | |
"""Allows custom preprocessing model inputs and ground truths depending on task type.""" | |
return batch | |
def validate(self): | |
""" | |
Runs validation on test set using self.validator. | |
The returned dict is expected to contain "fitness" key. | |
""" | |
metrics = self.validator(self) | |
fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found | |
if not self.best_fitness or self.best_fitness < fitness: | |
self.best_fitness = fitness | |
return metrics, fitness | |
def get_model(self, cfg=None, weights=None, verbose=True): | |
"""Get model and raise NotImplementedError for loading cfg files.""" | |
raise NotImplementedError("This task trainer doesn't support loading cfg files") | |
def get_validator(self): | |
"""Returns a NotImplementedError when the get_validator function is called.""" | |
raise NotImplementedError("get_validator function not implemented in trainer") | |
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"): | |
"""Returns dataloader derived from torch.data.Dataloader.""" | |
raise NotImplementedError("get_dataloader function not implemented in trainer") | |
def build_dataset(self, img_path, mode="train", batch=None): | |
"""Build dataset.""" | |
raise NotImplementedError("build_dataset function not implemented in trainer") | |
def label_loss_items(self, loss_items=None, prefix="train"): | |
""" | |
Returns a loss dict with labelled training loss items tensor. | |
Note: | |
This is not needed for classification but necessary for segmentation & detection | |
""" | |
return {"loss": loss_items} if loss_items is not None else ["loss"] | |
def set_model_attributes(self): | |
"""To set or update model parameters before training.""" | |
self.model.names = self.data["names"] | |
def build_targets(self, preds, targets): | |
"""Builds target tensors for training YOLO model.""" | |
pass | |
def progress_string(self): | |
"""Returns a string describing training progress.""" | |
return "" | |
# TODO: may need to put these following functions into callback | |
def plot_training_samples(self, batch, ni): | |
"""Plots training samples during YOLO training.""" | |
pass | |
def plot_training_labels(self): | |
"""Plots training labels for YOLO model.""" | |
pass | |
def save_metrics(self, metrics): | |
"""Saves training metrics to a CSV file.""" | |
keys, vals = list(metrics.keys()), list(metrics.values()) | |
n = len(metrics) + 1 # number of cols | |
s = "" if self.csv.exists() else (("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n") # header | |
with open(self.csv, "a") as f: | |
f.write(s + ("%23.5g," * n % tuple([self.epoch + 1] + vals)).rstrip(",") + "\n") | |
def plot_metrics(self): | |
"""Plot and display metrics visually.""" | |
pass | |
def on_plot(self, name, data=None): | |
"""Registers plots (e.g. to be consumed in callbacks)""" | |
path = Path(name) | |
self.plots[path] = {"data": data, "timestamp": time.time()} | |
def final_eval(self): | |
"""Performs final evaluation and validation for object detection YOLO model.""" | |
for f in self.last, self.best: | |
if f.exists(): | |
strip_optimizer(f) # strip optimizers | |
if f is self.best: | |
LOGGER.info(f"\nValidating {f}...") | |
self.validator.args.plots = self.args.plots | |
self.metrics = self.validator(model=f) | |
self.metrics.pop("fitness", None) | |
self.run_callbacks("on_fit_epoch_end") | |
def check_resume(self, overrides): | |
"""Check if resume checkpoint exists and update arguments accordingly.""" | |
resume = self.args.resume | |
if resume: | |
try: | |
exists = isinstance(resume, (str, Path)) and Path(resume).exists() | |
last = Path(check_file(resume) if exists else get_latest_run()) | |
# Check that resume data YAML exists, otherwise strip to force re-download of dataset | |
ckpt_args = attempt_load_weights(last).args | |
if not Path(ckpt_args["data"]).exists(): | |
ckpt_args["data"] = self.args.data | |
resume = True | |
self.args = get_cfg(ckpt_args) | |
self.args.model = self.args.resume = str(last) # reinstate model | |
for k in "imgsz", "batch", "device": # allow arg updates to reduce memory or update device on resume | |
if k in overrides: | |
setattr(self.args, k, overrides[k]) | |
except Exception as e: | |
raise FileNotFoundError( | |
"Resume checkpoint not found. Please pass a valid checkpoint to resume from, " | |
"i.e. 'yolo train resume model=path/to/last.pt'" | |
) from e | |
self.resume = resume | |
def resume_training(self, ckpt): | |
"""Resume YOLO training from given epoch and best fitness.""" | |
if ckpt is None or not self.resume: | |
return | |
best_fitness = 0.0 | |
start_epoch = ckpt["epoch"] + 1 | |
if ckpt["optimizer"] is not None: | |
self.optimizer.load_state_dict(ckpt["optimizer"]) # optimizer | |
best_fitness = ckpt["best_fitness"] | |
if self.ema and ckpt.get("ema"): | |
self.ema.ema.load_state_dict(ckpt["ema"].float().state_dict()) # EMA | |
self.ema.updates = ckpt["updates"] | |
assert start_epoch > 0, ( | |
f"{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n" | |
f"Start a new training without resuming, i.e. 'yolo train model={self.args.model}'" | |
) | |
LOGGER.info(f"Resuming training {self.args.model} from epoch {start_epoch + 1} to {self.epochs} total epochs") | |
if self.epochs < start_epoch: | |
LOGGER.info( | |
f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs." | |
) | |
self.epochs += ckpt["epoch"] # finetune additional epochs | |
self.best_fitness = best_fitness | |
self.start_epoch = start_epoch | |
if start_epoch > (self.epochs - self.args.close_mosaic): | |
self._close_dataloader_mosaic() | |
def _close_dataloader_mosaic(self): | |
"""Update dataloaders to stop using mosaic augmentation.""" | |
if hasattr(self.train_loader.dataset, "mosaic"): | |
self.train_loader.dataset.mosaic = False | |
if hasattr(self.train_loader.dataset, "close_mosaic"): | |
LOGGER.info("Closing dataloader mosaic") | |
self.train_loader.dataset.close_mosaic(hyp=self.args) | |
def build_optimizer(self, model, name="auto", lr=0.001, momentum=0.9, decay=1e-5, iterations=1e5): | |
""" | |
Constructs an optimizer for the given model, based on the specified optimizer name, learning rate, momentum, | |
weight decay, and number of iterations. | |
Args: | |
model (torch.nn.Module): The model for which to build an optimizer. | |
name (str, optional): The name of the optimizer to use. If 'auto', the optimizer is selected | |
based on the number of iterations. Default: 'auto'. | |
lr (float, optional): The learning rate for the optimizer. Default: 0.001. | |
momentum (float, optional): The momentum factor for the optimizer. Default: 0.9. | |
decay (float, optional): The weight decay for the optimizer. Default: 1e-5. | |
iterations (float, optional): The number of iterations, which determines the optimizer if | |
name is 'auto'. Default: 1e5. | |
Returns: | |
(torch.optim.Optimizer): The constructed optimizer. | |
""" | |
g = [], [], [] # optimizer parameter groups | |
bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k) # normalization layers, i.e. BatchNorm2d() | |
if name == "auto": | |
LOGGER.info( | |
f"{colorstr('optimizer:')} 'optimizer=auto' found, " | |
f"ignoring 'lr0={self.args.lr0}' and 'momentum={self.args.momentum}' and " | |
f"determining best 'optimizer', 'lr0' and 'momentum' automatically... " | |
) | |
nc = getattr(model, "nc", 10) # number of classes | |
lr_fit = round(0.002 * 5 / (4 + nc), 6) # lr0 fit equation to 6 decimal places | |
name, lr, momentum = ("SGD", 0.01, 0.9) if iterations > 10000 else ("AdamW", lr_fit, 0.9) | |
self.args.warmup_bias_lr = 0.0 # no higher than 0.01 for Adam | |
for module_name, module in model.named_modules(): | |
for param_name, param in module.named_parameters(recurse=False): | |
fullname = f"{module_name}.{param_name}" if module_name else param_name | |
if "bias" in fullname: # bias (no decay) | |
g[2].append(param) | |
elif isinstance(module, bn): # weight (no decay) | |
g[1].append(param) | |
else: # weight (with decay) | |
g[0].append(param) | |
if name in ("Adam", "Adamax", "AdamW", "NAdam", "RAdam"): | |
optimizer = getattr(optim, name, optim.Adam)(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) | |
elif name == "RMSProp": | |
optimizer = optim.RMSprop(g[2], lr=lr, momentum=momentum) | |
elif name == "SGD": | |
optimizer = optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) | |
else: | |
raise NotImplementedError( | |
f"Optimizer '{name}' not found in list of available optimizers " | |
f"[Adam, AdamW, NAdam, RAdam, RMSProp, SGD, auto]." | |
"To request support for addition optimizers please visit https://github.com/ultralytics/ultralytics." | |
) | |
optimizer.add_param_group({"params": g[0], "weight_decay": decay}) # add g0 with weight_decay | |
optimizer.add_param_group({"params": g[1], "weight_decay": 0.0}) # add g1 (BatchNorm2d weights) | |
LOGGER.info( | |
f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}, momentum={momentum}) with parameter groups " | |
f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias(decay=0.0)' | |
) | |
return optimizer | |