Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
""" | |
Export a YOLOv8 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit | |
Format | `format=argument` | Model | |
--- | --- | --- | |
PyTorch | - | yolov8n.pt | |
TorchScript | `torchscript` | yolov8n.torchscript | |
ONNX | `onnx` | yolov8n.onnx | |
OpenVINO | `openvino` | yolov8n_openvino_model/ | |
TensorRT | `engine` | yolov8n.engine | |
CoreML | `coreml` | yolov8n.mlpackage | |
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/ | |
TensorFlow GraphDef | `pb` | yolov8n.pb | |
TensorFlow Lite | `tflite` | yolov8n.tflite | |
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite | |
TensorFlow.js | `tfjs` | yolov8n_web_model/ | |
PaddlePaddle | `paddle` | yolov8n_paddle_model/ | |
NCNN | `ncnn` | yolov8n_ncnn_model/ | |
Requirements: | |
$ pip install "ultralytics[export]" | |
Python: | |
from ultralytics import YOLO | |
model = YOLO('yolov8n.pt') | |
results = model.export(format='onnx') | |
CLI: | |
$ yolo mode=export model=yolov8n.pt format=onnx | |
Inference: | |
$ yolo predict model=yolov8n.pt # PyTorch | |
yolov8n.torchscript # TorchScript | |
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True | |
yolov8n_openvino_model # OpenVINO | |
yolov8n.engine # TensorRT | |
yolov8n.mlpackage # CoreML (macOS-only) | |
yolov8n_saved_model # TensorFlow SavedModel | |
yolov8n.pb # TensorFlow GraphDef | |
yolov8n.tflite # TensorFlow Lite | |
yolov8n_edgetpu.tflite # TensorFlow Edge TPU | |
yolov8n_paddle_model # PaddlePaddle | |
yolov8n_ncnn_model # NCNN | |
TensorFlow.js: | |
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example | |
$ npm install | |
$ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model | |
$ npm start | |
""" | |
import json | |
import os | |
import shutil | |
import subprocess | |
import time | |
import warnings | |
from copy import deepcopy | |
from datetime import datetime | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from ultralytics.cfg import get_cfg | |
from ultralytics.data.dataset import YOLODataset | |
from ultralytics.data.utils import check_det_dataset | |
from ultralytics.nn.autobackend import check_class_names, default_class_names | |
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder, v10Detect | |
from ultralytics.nn.tasks import DetectionModel, SegmentationModel, WorldModel | |
from ultralytics.utils import ( | |
ARM64, | |
DEFAULT_CFG, | |
LINUX, | |
LOGGER, | |
MACOS, | |
ROOT, | |
WINDOWS, | |
__version__, | |
callbacks, | |
colorstr, | |
get_default_args, | |
yaml_save, | |
) | |
from ultralytics.utils.checks import PYTHON_VERSION, check_imgsz, check_is_path_safe, check_requirements, check_version | |
from ultralytics.utils.downloads import attempt_download_asset, get_github_assets | |
from ultralytics.utils.files import file_size, spaces_in_path | |
from ultralytics.utils.ops import Profile | |
from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device, smart_inference_mode | |
def export_formats(): | |
"""YOLOv8 export formats.""" | |
import pandas | |
x = [ | |
["PyTorch", "-", ".pt", True, True], | |
["TorchScript", "torchscript", ".torchscript", True, True], | |
["ONNX", "onnx", ".onnx", True, True], | |
["OpenVINO", "openvino", "_openvino_model", True, False], | |
["TensorRT", "engine", ".engine", False, True], | |
["CoreML", "coreml", ".mlpackage", True, False], | |
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True], | |
["TensorFlow GraphDef", "pb", ".pb", True, True], | |
["TensorFlow Lite", "tflite", ".tflite", True, False], | |
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False], | |
["TensorFlow.js", "tfjs", "_web_model", True, False], | |
["PaddlePaddle", "paddle", "_paddle_model", True, True], | |
["NCNN", "ncnn", "_ncnn_model", True, True], | |
] | |
return pandas.DataFrame(x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"]) | |
def gd_outputs(gd): | |
"""TensorFlow GraphDef model output node names.""" | |
name_list, input_list = [], [] | |
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef | |
name_list.append(node.name) | |
input_list.extend(node.input) | |
return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp")) | |
def try_export(inner_func): | |
"""YOLOv8 export decorator, i..e @try_export.""" | |
inner_args = get_default_args(inner_func) | |
def outer_func(*args, **kwargs): | |
"""Export a model.""" | |
prefix = inner_args["prefix"] | |
try: | |
with Profile() as dt: | |
f, model = inner_func(*args, **kwargs) | |
LOGGER.info(f"{prefix} export success β {dt.t:.1f}s, saved as '{f}' ({file_size(f):.1f} MB)") | |
return f, model | |
except Exception as e: | |
LOGGER.info(f"{prefix} export failure β {dt.t:.1f}s: {e}") | |
raise e | |
return outer_func | |
class Exporter: | |
""" | |
A class for exporting a model. | |
Attributes: | |
args (SimpleNamespace): Configuration for the exporter. | |
callbacks (list, optional): List of callback functions. Defaults to None. | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
""" | |
Initializes the Exporter class. | |
Args: | |
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. | |
overrides (dict, optional): Configuration overrides. Defaults to None. | |
_callbacks (dict, optional): Dictionary of callback functions. Defaults to None. | |
""" | |
self.args = get_cfg(cfg, overrides) | |
if self.args.format.lower() in ("coreml", "mlmodel"): # fix attempt for protobuf<3.20.x errors | |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" # must run before TensorBoard callback | |
self.callbacks = _callbacks or callbacks.get_default_callbacks() | |
callbacks.add_integration_callbacks(self) | |
def __call__(self, model=None): | |
"""Returns list of exported files/dirs after running callbacks.""" | |
self.run_callbacks("on_export_start") | |
t = time.time() | |
fmt = self.args.format.lower() # to lowercase | |
if fmt in ("tensorrt", "trt"): # 'engine' aliases | |
fmt = "engine" | |
if fmt in ("mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"): # 'coreml' aliases | |
fmt = "coreml" | |
fmts = tuple(export_formats()["Argument"][1:]) # available export formats | |
flags = [x == fmt for x in fmts] | |
if sum(flags) != 1: | |
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}") | |
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn = flags # export booleans | |
# Device | |
if fmt == "engine" and self.args.device is None: | |
LOGGER.warning("WARNING β οΈ TensorRT requires GPU export, automatically assigning device=0") | |
self.args.device = "0" | |
self.device = select_device("cpu" if self.args.device is None else self.args.device) | |
# Checks | |
if not hasattr(model, "names"): | |
model.names = default_class_names() | |
model.names = check_class_names(model.names) | |
if self.args.half and onnx and self.device.type == "cpu": | |
LOGGER.warning("WARNING β οΈ half=True only compatible with GPU export, i.e. use device=0") | |
self.args.half = False | |
assert not self.args.dynamic, "half=True not compatible with dynamic=True, i.e. use only one." | |
self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size | |
if self.args.optimize: | |
assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False" | |
assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'" | |
if edgetpu and not LINUX: | |
raise SystemError("Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler/") | |
if isinstance(model, WorldModel): | |
LOGGER.warning( | |
"WARNING β οΈ YOLOWorld (original version) export is not supported to any format.\n" | |
"WARNING β οΈ YOLOWorldv2 models (i.e. 'yolov8s-worldv2.pt') only support export to " | |
"(torchscript, onnx, openvino, engine, coreml) formats. " | |
"See https://docs.ultralytics.com/models/yolo-world for details." | |
) | |
# Input | |
im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device) | |
file = Path( | |
getattr(model, "pt_path", None) or getattr(model, "yaml_file", None) or model.yaml.get("yaml_file", "") | |
) | |
if file.suffix in {".yaml", ".yml"}: | |
file = Path(file.name) | |
# Update model | |
model = deepcopy(model).to(self.device) | |
for p in model.parameters(): | |
p.requires_grad = False | |
model.eval() | |
model.float() | |
model = model.fuse() | |
for m in model.modules(): | |
if isinstance(m, (Detect, RTDETRDecoder)): # includes all Detect subclasses like Segment, Pose, OBB | |
m.dynamic = self.args.dynamic | |
m.export = True | |
m.format = self.args.format | |
if isinstance(m, v10Detect): | |
m.max_det = self.args.max_det | |
elif isinstance(m, C2f) and not any((saved_model, pb, tflite, edgetpu, tfjs)): | |
# EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph | |
m.forward = m.forward_split | |
y = None | |
for _ in range(2): | |
y = model(im) # dry runs | |
if self.args.half and onnx and self.device.type != "cpu": | |
im, model = im.half(), model.half() # to FP16 | |
# Filter warnings | |
warnings.filterwarnings("ignore", category=torch.jit.TracerWarning) # suppress TracerWarning | |
warnings.filterwarnings("ignore", category=UserWarning) # suppress shape prim::Constant missing ONNX warning | |
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress CoreML np.bool deprecation warning | |
# Assign | |
self.im = im | |
self.model = model | |
self.file = file | |
self.output_shape = ( | |
tuple(y.shape) | |
if isinstance(y, torch.Tensor) | |
else tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y) | |
) | |
self.pretty_name = Path(self.model.yaml.get("yaml_file", self.file)).stem.replace("yolo", "YOLO") | |
data = model.args["data"] if hasattr(model, "args") and isinstance(model.args, dict) else "" | |
description = f'Ultralytics {self.pretty_name} model {f"trained on {data}" if data else ""}' | |
self.metadata = { | |
"description": description, | |
"author": "Ultralytics", | |
"date": datetime.now().isoformat(), | |
"version": __version__, | |
"license": "AGPL-3.0 License (https://ultralytics.com/license)", | |
"docs": "https://docs.ultralytics.com", | |
"stride": int(max(model.stride)), | |
"task": model.task, | |
"batch": self.args.batch, | |
"imgsz": self.imgsz, | |
"names": model.names, | |
} # model metadata | |
if model.task == "pose": | |
self.metadata["kpt_shape"] = model.model[-1].kpt_shape | |
LOGGER.info( | |
f"\n{colorstr('PyTorch:')} starting from '{file}' with input shape {tuple(im.shape)} BCHW and " | |
f'output shape(s) {self.output_shape} ({file_size(file):.1f} MB)' | |
) | |
# Exports | |
f = [""] * len(fmts) # exported filenames | |
if jit or ncnn: # TorchScript | |
f[0], _ = self.export_torchscript() | |
if engine: # TensorRT required before ONNX | |
f[1], _ = self.export_engine() | |
if onnx: # ONNX | |
f[2], _ = self.export_onnx() | |
if xml: # OpenVINO | |
f[3], _ = self.export_openvino() | |
if coreml: # CoreML | |
f[4], _ = self.export_coreml() | |
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats | |
self.args.int8 |= edgetpu | |
f[5], keras_model = self.export_saved_model() | |
if pb or tfjs: # pb prerequisite to tfjs | |
f[6], _ = self.export_pb(keras_model=keras_model) | |
if tflite: | |
f[7], _ = self.export_tflite(keras_model=keras_model, nms=False, agnostic_nms=self.args.agnostic_nms) | |
if edgetpu: | |
f[8], _ = self.export_edgetpu(tflite_model=Path(f[5]) / f"{self.file.stem}_full_integer_quant.tflite") | |
if tfjs: | |
f[9], _ = self.export_tfjs() | |
if paddle: # PaddlePaddle | |
f[10], _ = self.export_paddle() | |
if ncnn: # NCNN | |
f[11], _ = self.export_ncnn() | |
# Finish | |
f = [str(x) for x in f if x] # filter out '' and None | |
if any(f): | |
f = str(Path(f[-1])) | |
square = self.imgsz[0] == self.imgsz[1] | |
s = ( | |
"" | |
if square | |
else f"WARNING β οΈ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not " | |
f"work. Use export 'imgsz={max(self.imgsz)}' if val is required." | |
) | |
imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(" ", "") | |
predict_data = f"data={data}" if model.task == "segment" and fmt == "pb" else "" | |
q = "int8" if self.args.int8 else "half" if self.args.half else "" # quantization | |
LOGGER.info( | |
f'\nExport complete ({time.time() - t:.1f}s)' | |
f"\nResults saved to {colorstr('bold', file.parent.resolve())}" | |
f'\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {q} {predict_data}' | |
f'\nValidate: yolo val task={model.task} model={f} imgsz={imgsz} data={data} {q} {s}' | |
f'\nVisualize: https://netron.app' | |
) | |
self.run_callbacks("on_export_end") | |
return f # return list of exported files/dirs | |
def export_torchscript(self, prefix=colorstr("TorchScript:")): | |
"""YOLOv8 TorchScript model export.""" | |
LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...") | |
f = self.file.with_suffix(".torchscript") | |
ts = torch.jit.trace(self.model, self.im, strict=False) | |
extra_files = {"config.txt": json.dumps(self.metadata)} # torch._C.ExtraFilesMap() | |
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html | |
LOGGER.info(f"{prefix} optimizing for mobile...") | |
from torch.utils.mobile_optimizer import optimize_for_mobile | |
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) | |
else: | |
ts.save(str(f), _extra_files=extra_files) | |
return f, None | |
def export_onnx(self, prefix=colorstr("ONNX:")): | |
"""YOLOv8 ONNX export.""" | |
requirements = ["onnx>=1.12.0"] | |
if self.args.simplify: | |
requirements += ["onnxsim>=0.4.33", "onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime"] | |
if ARM64: | |
check_requirements("cmake") # 'cmake' is needed to build onnxsim on aarch64 | |
check_requirements(requirements) | |
import onnx # noqa | |
opset_version = self.args.opset or get_latest_opset() | |
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...") | |
f = str(self.file.with_suffix(".onnx")) | |
output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"] | |
dynamic = self.args.dynamic | |
if dynamic: | |
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640) | |
if isinstance(self.model, SegmentationModel): | |
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400) | |
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160) | |
elif isinstance(self.model, DetectionModel): | |
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 84, 8400) | |
torch.onnx.export( | |
self.model.cpu() if dynamic else self.model, # dynamic=True only compatible with cpu | |
self.im.cpu() if dynamic else self.im, | |
f, | |
verbose=False, | |
opset_version=opset_version, | |
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False | |
input_names=["images"], | |
output_names=output_names, | |
dynamic_axes=dynamic or None, | |
) | |
# Checks | |
model_onnx = onnx.load(f) # load onnx model | |
# onnx.checker.check_model(model_onnx) # check onnx model | |
# Simplify | |
if self.args.simplify: | |
try: | |
import onnxsim | |
LOGGER.info(f"{prefix} simplifying with onnxsim {onnxsim.__version__}...") | |
# subprocess.run(f'onnxsim "{f}" "{f}"', shell=True) | |
model_onnx, check = onnxsim.simplify(model_onnx) | |
assert check, "Simplified ONNX model could not be validated" | |
except Exception as e: | |
LOGGER.info(f"{prefix} simplifier failure: {e}") | |
# Metadata | |
for k, v in self.metadata.items(): | |
meta = model_onnx.metadata_props.add() | |
meta.key, meta.value = k, str(v) | |
onnx.save(model_onnx, f) | |
return f, model_onnx | |
def export_openvino(self, prefix=colorstr("OpenVINO:")): | |
"""YOLOv8 OpenVINO export.""" | |
check_requirements("openvino>=2024.0.0") # requires openvino: https://pypi.org/project/openvino/ | |
import openvino as ov | |
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...") | |
assert TORCH_1_13, f"OpenVINO export requires torch>=1.13.0 but torch=={torch.__version__} is installed" | |
ov_model = ov.convert_model( | |
self.model.cpu(), | |
input=None if self.args.dynamic else [self.im.shape], | |
example_input=self.im, | |
) | |
def serialize(ov_model, file): | |
"""Set RT info, serialize and save metadata YAML.""" | |
ov_model.set_rt_info("YOLOv8", ["model_info", "model_type"]) | |
ov_model.set_rt_info(True, ["model_info", "reverse_input_channels"]) | |
ov_model.set_rt_info(114, ["model_info", "pad_value"]) | |
ov_model.set_rt_info([255.0], ["model_info", "scale_values"]) | |
ov_model.set_rt_info(self.args.iou, ["model_info", "iou_threshold"]) | |
ov_model.set_rt_info([v.replace(" ", "_") for v in self.model.names.values()], ["model_info", "labels"]) | |
if self.model.task != "classify": | |
ov_model.set_rt_info("fit_to_window_letterbox", ["model_info", "resize_type"]) | |
ov.runtime.save_model(ov_model, file, compress_to_fp16=self.args.half) | |
yaml_save(Path(file).parent / "metadata.yaml", self.metadata) # add metadata.yaml | |
if self.args.int8: | |
fq = str(self.file).replace(self.file.suffix, f"_int8_openvino_model{os.sep}") | |
fq_ov = str(Path(fq) / self.file.with_suffix(".xml").name) | |
if not self.args.data: | |
self.args.data = DEFAULT_CFG.data or "coco128.yaml" | |
LOGGER.warning( | |
f"{prefix} WARNING β οΈ INT8 export requires a missing 'data' arg for calibration. " | |
f"Using default 'data={self.args.data}'." | |
) | |
check_requirements("nncf>=2.8.0") | |
import nncf | |
def transform_fn(data_item): | |
"""Quantization transform function.""" | |
assert ( | |
data_item["img"].dtype == torch.uint8 | |
), "Input image must be uint8 for the quantization preprocessing" | |
im = data_item["img"].numpy().astype(np.float32) / 255.0 # uint8 to fp16/32 and 0 - 255 to 0.0 - 1.0 | |
return np.expand_dims(im, 0) if im.ndim == 3 else im | |
# Generate calibration data for integer quantization | |
LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'") | |
data = check_det_dataset(self.args.data) | |
dataset = YOLODataset(data["val"], data=data, imgsz=self.imgsz[0], augment=False) | |
n = len(dataset) | |
if n < 300: | |
LOGGER.warning(f"{prefix} WARNING β οΈ >300 images recommended for INT8 calibration, found {n} images.") | |
quantization_dataset = nncf.Dataset(dataset, transform_fn) | |
ignored_scope = None | |
if isinstance(self.model.model[-1], Detect): | |
# Includes all Detect subclasses like Segment, Pose, OBB, WorldDetect | |
head_module_name = ".".join(list(self.model.named_modules())[-1][0].split(".")[:2]) | |
ignored_scope = nncf.IgnoredScope( # ignore operations | |
patterns=[ | |
f".*{head_module_name}/.*/Add", | |
f".*{head_module_name}/.*/Sub*", | |
f".*{head_module_name}/.*/Mul*", | |
f".*{head_module_name}/.*/Div*", | |
f".*{head_module_name}\\.dfl.*", | |
], | |
types=["Sigmoid"], | |
) | |
quantized_ov_model = nncf.quantize( | |
ov_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED, ignored_scope=ignored_scope | |
) | |
serialize(quantized_ov_model, fq_ov) | |
return fq, None | |
f = str(self.file).replace(self.file.suffix, f"_openvino_model{os.sep}") | |
f_ov = str(Path(f) / self.file.with_suffix(".xml").name) | |
serialize(ov_model, f_ov) | |
return f, None | |
def export_paddle(self, prefix=colorstr("PaddlePaddle:")): | |
"""YOLOv8 Paddle export.""" | |
check_requirements(("paddlepaddle", "x2paddle")) | |
import x2paddle # noqa | |
from x2paddle.convert import pytorch2paddle # noqa | |
LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...") | |
f = str(self.file).replace(self.file.suffix, f"_paddle_model{os.sep}") | |
pytorch2paddle(module=self.model, save_dir=f, jit_type="trace", input_examples=[self.im]) # export | |
yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml | |
return f, None | |
def export_ncnn(self, prefix=colorstr("NCNN:")): | |
""" | |
YOLOv8 NCNN export using PNNX https://github.com/pnnx/pnnx. | |
""" | |
check_requirements("ncnn") | |
import ncnn # noqa | |
LOGGER.info(f"\n{prefix} starting export with NCNN {ncnn.__version__}...") | |
f = Path(str(self.file).replace(self.file.suffix, f"_ncnn_model{os.sep}")) | |
f_ts = self.file.with_suffix(".torchscript") | |
name = Path("pnnx.exe" if WINDOWS else "pnnx") # PNNX filename | |
pnnx = name if name.is_file() else ROOT / name | |
if not pnnx.is_file(): | |
LOGGER.warning( | |
f"{prefix} WARNING β οΈ PNNX not found. Attempting to download binary file from " | |
"https://github.com/pnnx/pnnx/.\nNote PNNX Binary file must be placed in current working directory " | |
f"or in {ROOT}. See PNNX repo for full installation instructions." | |
) | |
system = "macos" if MACOS else "windows" if WINDOWS else "linux-aarch64" if ARM64 else "linux" | |
_, assets = get_github_assets(repo="pnnx/pnnx", retry=True) | |
if assets: | |
url = [x for x in assets if f"{system}.zip" in x][0] | |
else: | |
url = f"https://github.com/pnnx/pnnx/releases/download/20240226/pnnx-20240226-{system}.zip" | |
LOGGER.warning(f"{prefix} WARNING β οΈ PNNX GitHub assets not found, using default {url}") | |
asset = attempt_download_asset(url, repo="pnnx/pnnx", release="latest") | |
if check_is_path_safe(Path.cwd(), asset): # avoid path traversal security vulnerability | |
unzip_dir = Path(asset).with_suffix("") | |
(unzip_dir / name).rename(pnnx) # move binary to ROOT | |
shutil.rmtree(unzip_dir) # delete unzip dir | |
Path(asset).unlink() # delete zip | |
pnnx.chmod(0o777) # set read, write, and execute permissions for everyone | |
ncnn_args = [ | |
f'ncnnparam={f / "model.ncnn.param"}', | |
f'ncnnbin={f / "model.ncnn.bin"}', | |
f'ncnnpy={f / "model_ncnn.py"}', | |
] | |
pnnx_args = [ | |
f'pnnxparam={f / "model.pnnx.param"}', | |
f'pnnxbin={f / "model.pnnx.bin"}', | |
f'pnnxpy={f / "model_pnnx.py"}', | |
f'pnnxonnx={f / "model.pnnx.onnx"}', | |
] | |
cmd = [ | |
str(pnnx), | |
str(f_ts), | |
*ncnn_args, | |
*pnnx_args, | |
f"fp16={int(self.args.half)}", | |
f"device={self.device.type}", | |
f'inputshape="{[self.args.batch, 3, *self.imgsz]}"', | |
] | |
f.mkdir(exist_ok=True) # make ncnn_model directory | |
LOGGER.info(f"{prefix} running '{' '.join(cmd)}'") | |
subprocess.run(cmd, check=True) | |
# Remove debug files | |
pnnx_files = [x.split("=")[-1] for x in pnnx_args] | |
for f_debug in ("debug.bin", "debug.param", "debug2.bin", "debug2.param", *pnnx_files): | |
Path(f_debug).unlink(missing_ok=True) | |
yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml | |
return str(f), None | |
def export_coreml(self, prefix=colorstr("CoreML:")): | |
"""YOLOv8 CoreML export.""" | |
mlmodel = self.args.format.lower() == "mlmodel" # legacy *.mlmodel export format requested | |
check_requirements("coremltools>=6.0,<=6.2" if mlmodel else "coremltools>=7.0") | |
import coremltools as ct # noqa | |
LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...") | |
assert not WINDOWS, "CoreML export is not supported on Windows, please run on macOS or Linux." | |
f = self.file.with_suffix(".mlmodel" if mlmodel else ".mlpackage") | |
if f.is_dir(): | |
shutil.rmtree(f) | |
bias = [0.0, 0.0, 0.0] | |
scale = 1 / 255 | |
classifier_config = None | |
if self.model.task == "classify": | |
classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None | |
model = self.model | |
elif self.model.task == "detect": | |
model = IOSDetectModel(self.model, self.im) if self.args.nms else self.model | |
else: | |
if self.args.nms: | |
LOGGER.warning(f"{prefix} WARNING β οΈ 'nms=True' is only available for Detect models like 'yolov8n.pt'.") | |
# TODO CoreML Segment and Pose model pipelining | |
model = self.model | |
ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model | |
ct_model = ct.convert( | |
ts, | |
inputs=[ct.ImageType("image", shape=self.im.shape, scale=scale, bias=bias)], | |
classifier_config=classifier_config, | |
convert_to="neuralnetwork" if mlmodel else "mlprogram", | |
) | |
bits, mode = (8, "kmeans") if self.args.int8 else (16, "linear") if self.args.half else (32, None) | |
if bits < 32: | |
if "kmeans" in mode: | |
check_requirements("scikit-learn") # scikit-learn package required for k-means quantization | |
if mlmodel: | |
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) | |
elif bits == 8: # mlprogram already quantized to FP16 | |
import coremltools.optimize.coreml as cto | |
op_config = cto.OpPalettizerConfig(mode="kmeans", nbits=bits, weight_threshold=512) | |
config = cto.OptimizationConfig(global_config=op_config) | |
ct_model = cto.palettize_weights(ct_model, config=config) | |
if self.args.nms and self.model.task == "detect": | |
if mlmodel: | |
# coremltools<=6.2 NMS export requires Python<3.11 | |
check_version(PYTHON_VERSION, "<3.11", name="Python ", hard=True) | |
weights_dir = None | |
else: | |
ct_model.save(str(f)) # save otherwise weights_dir does not exist | |
weights_dir = str(f / "Data/com.apple.CoreML/weights") | |
ct_model = self._pipeline_coreml(ct_model, weights_dir=weights_dir) | |
m = self.metadata # metadata dict | |
ct_model.short_description = m.pop("description") | |
ct_model.author = m.pop("author") | |
ct_model.license = m.pop("license") | |
ct_model.version = m.pop("version") | |
ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()}) | |
try: | |
ct_model.save(str(f)) # save *.mlpackage | |
except Exception as e: | |
LOGGER.warning( | |
f"{prefix} WARNING β οΈ CoreML export to *.mlpackage failed ({e}), reverting to *.mlmodel export. " | |
f"Known coremltools Python 3.11 and Windows bugs https://github.com/apple/coremltools/issues/1928." | |
) | |
f = f.with_suffix(".mlmodel") | |
ct_model.save(str(f)) | |
return f, ct_model | |
def export_engine(self, prefix=colorstr("TensorRT:")): | |
"""YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt.""" | |
assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'" | |
f_onnx, _ = self.export_onnx() # run before trt import https://github.com/ultralytics/ultralytics/issues/7016 | |
try: | |
import tensorrt as trt # noqa | |
except ImportError: | |
if LINUX: | |
check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com") | |
import tensorrt as trt # noqa | |
check_version(trt.__version__, "7.0.0", hard=True) # require tensorrt>=7.0.0 | |
self.args.simplify = True | |
LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...") | |
assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}" | |
f = self.file.with_suffix(".engine") # TensorRT engine file | |
logger = trt.Logger(trt.Logger.INFO) | |
if self.args.verbose: | |
logger.min_severity = trt.Logger.Severity.VERBOSE | |
builder = trt.Builder(logger) | |
config = builder.create_builder_config() | |
config.max_workspace_size = self.args.workspace * 1 << 30 | |
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice | |
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) | |
network = builder.create_network(flag) | |
parser = trt.OnnxParser(network, logger) | |
if not parser.parse_from_file(f_onnx): | |
raise RuntimeError(f"failed to load ONNX file: {f_onnx}") | |
inputs = [network.get_input(i) for i in range(network.num_inputs)] | |
outputs = [network.get_output(i) for i in range(network.num_outputs)] | |
for inp in inputs: | |
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}') | |
for out in outputs: | |
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}') | |
if self.args.dynamic: | |
shape = self.im.shape | |
if shape[0] <= 1: | |
LOGGER.warning(f"{prefix} WARNING β οΈ 'dynamic=True' model requires max batch size, i.e. 'batch=16'") | |
profile = builder.create_optimization_profile() | |
for inp in inputs: | |
profile.set_shape(inp.name, (1, *shape[1:]), (max(1, shape[0] // 2), *shape[1:]), shape) | |
config.add_optimization_profile(profile) | |
LOGGER.info( | |
f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}" | |
) | |
if builder.platform_has_fast_fp16 and self.args.half: | |
config.set_flag(trt.BuilderFlag.FP16) | |
del self.model | |
torch.cuda.empty_cache() | |
# Write file | |
with builder.build_engine(network, config) as engine, open(f, "wb") as t: | |
# Metadata | |
meta = json.dumps(self.metadata) | |
t.write(len(meta).to_bytes(4, byteorder="little", signed=True)) | |
t.write(meta.encode()) | |
# Model | |
t.write(engine.serialize()) | |
return f, None | |
def export_saved_model(self, prefix=colorstr("TensorFlow SavedModel:")): | |
"""YOLOv8 TensorFlow SavedModel export.""" | |
cuda = torch.cuda.is_available() | |
try: | |
import tensorflow as tf # noqa | |
except ImportError: | |
suffix = "-macos" if MACOS else "-aarch64" if ARM64 else "" if cuda else "-cpu" | |
version = "" if ARM64 else "<=2.13.1" | |
check_requirements(f"tensorflow{suffix}{version}") | |
import tensorflow as tf # noqa | |
if ARM64: | |
check_requirements("cmake") # 'cmake' is needed to build onnxsim on aarch64 | |
check_requirements( | |
( | |
"onnx>=1.12.0", | |
"onnx2tf>=1.15.4,<=1.17.5", | |
"sng4onnx>=1.0.1", | |
"onnxsim>=0.4.33", | |
"onnx_graphsurgeon>=0.3.26", | |
"tflite_support", | |
"flatbuffers>=23.5.26,<100", # update old 'flatbuffers' included inside tensorflow package | |
"onnxruntime-gpu" if cuda else "onnxruntime", | |
), | |
cmds="--extra-index-url https://pypi.ngc.nvidia.com", | |
) # onnx_graphsurgeon only on NVIDIA | |
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...") | |
check_version( | |
tf.__version__, | |
"<=2.13.1", | |
name="tensorflow", | |
verbose=True, | |
msg="https://github.com/ultralytics/ultralytics/issues/5161", | |
) | |
import onnx2tf | |
f = Path(str(self.file).replace(self.file.suffix, "_saved_model")) | |
if f.is_dir(): | |
shutil.rmtree(f) # delete output folder | |
# Pre-download calibration file to fix https://github.com/PINTO0309/onnx2tf/issues/545 | |
onnx2tf_file = Path("calibration_image_sample_data_20x128x128x3_float32.npy") | |
if not onnx2tf_file.exists(): | |
attempt_download_asset(f"{onnx2tf_file}.zip", unzip=True, delete=True) | |
# Export to ONNX | |
self.args.simplify = True | |
f_onnx, _ = self.export_onnx() | |
# Export to TF | |
tmp_file = f / "tmp_tflite_int8_calibration_images.npy" # int8 calibration images file | |
np_data = None | |
if self.args.int8: | |
verbosity = "info" | |
if self.args.data: | |
# Generate calibration data for integer quantization | |
LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'") | |
data = check_det_dataset(self.args.data) | |
dataset = YOLODataset(data["val"], data=data, imgsz=self.imgsz[0], augment=False) | |
images = [] | |
for i, batch in enumerate(dataset): | |
if i >= 100: # maximum number of calibration images | |
break | |
im = batch["img"].permute(1, 2, 0)[None] # list to nparray, CHW to BHWC | |
images.append(im) | |
f.mkdir() | |
images = torch.cat(images, 0).float() | |
# mean = images.view(-1, 3).mean(0) # imagenet mean [123.675, 116.28, 103.53] | |
# std = images.view(-1, 3).std(0) # imagenet std [58.395, 57.12, 57.375] | |
np.save(str(tmp_file), images.numpy()) # BHWC | |
np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]] | |
else: | |
verbosity = "error" | |
LOGGER.info(f"{prefix} starting TFLite export with onnx2tf {onnx2tf.__version__}...") | |
onnx2tf.convert( | |
input_onnx_file_path=f_onnx, | |
output_folder_path=str(f), | |
not_use_onnxsim=True, | |
verbosity=verbosity, | |
output_integer_quantized_tflite=self.args.int8, | |
quant_type="per-tensor", # "per-tensor" (faster) or "per-channel" (slower but more accurate) | |
custom_input_op_name_np_data_path=np_data, | |
) | |
yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml | |
# Remove/rename TFLite models | |
if self.args.int8: | |
tmp_file.unlink(missing_ok=True) | |
for file in f.rglob("*_dynamic_range_quant.tflite"): | |
file.rename(file.with_name(file.stem.replace("_dynamic_range_quant", "_int8") + file.suffix)) | |
for file in f.rglob("*_integer_quant_with_int16_act.tflite"): | |
file.unlink() # delete extra fp16 activation TFLite files | |
# Add TFLite metadata | |
for file in f.rglob("*.tflite"): | |
f.unlink() if "quant_with_int16_act.tflite" in str(f) else self._add_tflite_metadata(file) | |
return str(f), tf.saved_model.load(f, tags=None, options=None) # load saved_model as Keras model | |
def export_pb(self, keras_model, prefix=colorstr("TensorFlow GraphDef:")): | |
"""YOLOv8 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow.""" | |
import tensorflow as tf # noqa | |
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa | |
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...") | |
f = self.file.with_suffix(".pb") | |
m = tf.function(lambda x: keras_model(x)) # full model | |
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) | |
frozen_func = convert_variables_to_constants_v2(m) | |
frozen_func.graph.as_graph_def() | |
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) | |
return f, None | |
def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")): | |
"""YOLOv8 TensorFlow Lite export.""" | |
import tensorflow as tf # noqa | |
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...") | |
saved_model = Path(str(self.file).replace(self.file.suffix, "_saved_model")) | |
if self.args.int8: | |
f = saved_model / f"{self.file.stem}_int8.tflite" # fp32 in/out | |
elif self.args.half: | |
f = saved_model / f"{self.file.stem}_float16.tflite" # fp32 in/out | |
else: | |
f = saved_model / f"{self.file.stem}_float32.tflite" | |
return str(f), None | |
def export_edgetpu(self, tflite_model="", prefix=colorstr("Edge TPU:")): | |
"""YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/.""" | |
LOGGER.warning(f"{prefix} WARNING β οΈ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185") | |
cmd = "edgetpu_compiler --version" | |
help_url = "https://coral.ai/docs/edgetpu/compiler/" | |
assert LINUX, f"export only supported on Linux. See {help_url}" | |
if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0: | |
LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}") | |
sudo = subprocess.run("sudo --version >/dev/null", shell=True).returncode == 0 # sudo installed on system | |
for c in ( | |
"curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -", | |
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | ' | |
"sudo tee /etc/apt/sources.list.d/coral-edgetpu.list", | |
"sudo apt-get update", | |
"sudo apt-get install edgetpu-compiler", | |
): | |
subprocess.run(c if sudo else c.replace("sudo ", ""), shell=True, check=True) | |
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] | |
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...") | |
f = str(tflite_model).replace(".tflite", "_edgetpu.tflite") # Edge TPU model | |
cmd = f'edgetpu_compiler -s -d -k 10 --out_dir "{Path(f).parent}" "{tflite_model}"' | |
LOGGER.info(f"{prefix} running '{cmd}'") | |
subprocess.run(cmd, shell=True) | |
self._add_tflite_metadata(f) | |
return f, None | |
def export_tfjs(self, prefix=colorstr("TensorFlow.js:")): | |
"""YOLOv8 TensorFlow.js export.""" | |
check_requirements("tensorflowjs") | |
if ARM64: | |
# Fix error: `np.object` was a deprecated alias for the builtin `object` when exporting to TF.js on ARM64 | |
check_requirements("numpy==1.23.5") | |
import tensorflow as tf | |
import tensorflowjs as tfjs # noqa | |
LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...") | |
f = str(self.file).replace(self.file.suffix, "_web_model") # js dir | |
f_pb = str(self.file.with_suffix(".pb")) # *.pb path | |
gd = tf.Graph().as_graph_def() # TF GraphDef | |
with open(f_pb, "rb") as file: | |
gd.ParseFromString(file.read()) | |
outputs = ",".join(gd_outputs(gd)) | |
LOGGER.info(f"\n{prefix} output node names: {outputs}") | |
quantization = "--quantize_float16" if self.args.half else "--quantize_uint8" if self.args.int8 else "" | |
with spaces_in_path(f_pb) as fpb_, spaces_in_path(f) as f_: # exporter can not handle spaces in path | |
cmd = ( | |
"tensorflowjs_converter " | |
f'--input_format=tf_frozen_model {quantization} --output_node_names={outputs} "{fpb_}" "{f_}"' | |
) | |
LOGGER.info(f"{prefix} running '{cmd}'") | |
subprocess.run(cmd, shell=True) | |
if " " in f: | |
LOGGER.warning(f"{prefix} WARNING β οΈ your model may not work correctly with spaces in path '{f}'.") | |
# f_json = Path(f) / 'model.json' # *.json path | |
# with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order | |
# subst = re.sub( | |
# r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' | |
# r'"Identity.?.?": {"name": "Identity.?.?"}, ' | |
# r'"Identity.?.?": {"name": "Identity.?.?"}, ' | |
# r'"Identity.?.?": {"name": "Identity.?.?"}}}', | |
# r'{"outputs": {"Identity": {"name": "Identity"}, ' | |
# r'"Identity_1": {"name": "Identity_1"}, ' | |
# r'"Identity_2": {"name": "Identity_2"}, ' | |
# r'"Identity_3": {"name": "Identity_3"}}}', | |
# f_json.read_text(), | |
# ) | |
# j.write(subst) | |
yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml | |
return f, None | |
def _add_tflite_metadata(self, file): | |
"""Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata.""" | |
from tflite_support import flatbuffers # noqa | |
from tflite_support import metadata as _metadata # noqa | |
from tflite_support import metadata_schema_py_generated as _metadata_fb # noqa | |
# Create model info | |
model_meta = _metadata_fb.ModelMetadataT() | |
model_meta.name = self.metadata["description"] | |
model_meta.version = self.metadata["version"] | |
model_meta.author = self.metadata["author"] | |
model_meta.license = self.metadata["license"] | |
# Label file | |
tmp_file = Path(file).parent / "temp_meta.txt" | |
with open(tmp_file, "w") as f: | |
f.write(str(self.metadata)) | |
label_file = _metadata_fb.AssociatedFileT() | |
label_file.name = tmp_file.name | |
label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS | |
# Create input info | |
input_meta = _metadata_fb.TensorMetadataT() | |
input_meta.name = "image" | |
input_meta.description = "Input image to be detected." | |
input_meta.content = _metadata_fb.ContentT() | |
input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT() | |
input_meta.content.contentProperties.colorSpace = _metadata_fb.ColorSpaceType.RGB | |
input_meta.content.contentPropertiesType = _metadata_fb.ContentProperties.ImageProperties | |
# Create output info | |
output1 = _metadata_fb.TensorMetadataT() | |
output1.name = "output" | |
output1.description = "Coordinates of detected objects, class labels, and confidence score" | |
output1.associatedFiles = [label_file] | |
if self.model.task == "segment": | |
output2 = _metadata_fb.TensorMetadataT() | |
output2.name = "output" | |
output2.description = "Mask protos" | |
output2.associatedFiles = [label_file] | |
# Create subgraph info | |
subgraph = _metadata_fb.SubGraphMetadataT() | |
subgraph.inputTensorMetadata = [input_meta] | |
subgraph.outputTensorMetadata = [output1, output2] if self.model.task == "segment" else [output1] | |
model_meta.subgraphMetadata = [subgraph] | |
b = flatbuffers.Builder(0) | |
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) | |
metadata_buf = b.Output() | |
populator = _metadata.MetadataPopulator.with_model_file(str(file)) | |
populator.load_metadata_buffer(metadata_buf) | |
populator.load_associated_files([str(tmp_file)]) | |
populator.populate() | |
tmp_file.unlink() | |
def _pipeline_coreml(self, model, weights_dir=None, prefix=colorstr("CoreML Pipeline:")): | |
"""YOLOv8 CoreML pipeline.""" | |
import coremltools as ct # noqa | |
LOGGER.info(f"{prefix} starting pipeline with coremltools {ct.__version__}...") | |
_, _, h, w = list(self.im.shape) # BCHW | |
# Output shapes | |
spec = model.get_spec() | |
out0, out1 = iter(spec.description.output) | |
if MACOS: | |
from PIL import Image | |
img = Image.new("RGB", (w, h)) # w=192, h=320 | |
out = model.predict({"image": img}) | |
out0_shape = out[out0.name].shape # (3780, 80) | |
out1_shape = out[out1.name].shape # (3780, 4) | |
else: # linux and windows can not run model.predict(), get sizes from PyTorch model output y | |
out0_shape = self.output_shape[2], self.output_shape[1] - 4 # (3780, 80) | |
out1_shape = self.output_shape[2], 4 # (3780, 4) | |
# Checks | |
names = self.metadata["names"] | |
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height | |
_, nc = out0_shape # number of anchors, number of classes | |
# _, nc = out0.type.multiArrayType.shape | |
assert len(names) == nc, f"{len(names)} names found for nc={nc}" # check | |
# Define output shapes (missing) | |
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80) | |
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4) | |
# spec.neuralNetwork.preprocessing[0].featureName = '0' | |
# Flexible input shapes | |
# from coremltools.models.neural_network import flexible_shape_utils | |
# s = [] # shapes | |
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192)) | |
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width) | |
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s) | |
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges | |
# r.add_height_range((192, 640)) | |
# r.add_width_range((192, 640)) | |
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r) | |
# print(spec.description) | |
# Model from spec | |
model = ct.models.MLModel(spec, weights_dir=weights_dir) | |
# 3. Create NMS protobuf | |
nms_spec = ct.proto.Model_pb2.Model() | |
nms_spec.specificationVersion = 5 | |
for i in range(2): | |
decoder_output = model._spec.description.output[i].SerializeToString() | |
nms_spec.description.input.add() | |
nms_spec.description.input[i].ParseFromString(decoder_output) | |
nms_spec.description.output.add() | |
nms_spec.description.output[i].ParseFromString(decoder_output) | |
nms_spec.description.output[0].name = "confidence" | |
nms_spec.description.output[1].name = "coordinates" | |
output_sizes = [nc, 4] | |
for i in range(2): | |
ma_type = nms_spec.description.output[i].type.multiArrayType | |
ma_type.shapeRange.sizeRanges.add() | |
ma_type.shapeRange.sizeRanges[0].lowerBound = 0 | |
ma_type.shapeRange.sizeRanges[0].upperBound = -1 | |
ma_type.shapeRange.sizeRanges.add() | |
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i] | |
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i] | |
del ma_type.shape[:] | |
nms = nms_spec.nonMaximumSuppression | |
nms.confidenceInputFeatureName = out0.name # 1x507x80 | |
nms.coordinatesInputFeatureName = out1.name # 1x507x4 | |
nms.confidenceOutputFeatureName = "confidence" | |
nms.coordinatesOutputFeatureName = "coordinates" | |
nms.iouThresholdInputFeatureName = "iouThreshold" | |
nms.confidenceThresholdInputFeatureName = "confidenceThreshold" | |
nms.iouThreshold = 0.45 | |
nms.confidenceThreshold = 0.25 | |
nms.pickTop.perClass = True | |
nms.stringClassLabels.vector.extend(names.values()) | |
nms_model = ct.models.MLModel(nms_spec) | |
# 4. Pipeline models together | |
pipeline = ct.models.pipeline.Pipeline( | |
input_features=[ | |
("image", ct.models.datatypes.Array(3, ny, nx)), | |
("iouThreshold", ct.models.datatypes.Double()), | |
("confidenceThreshold", ct.models.datatypes.Double()), | |
], | |
output_features=["confidence", "coordinates"], | |
) | |
pipeline.add_model(model) | |
pipeline.add_model(nms_model) | |
# Correct datatypes | |
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString()) | |
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString()) | |
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString()) | |
# Update metadata | |
pipeline.spec.specificationVersion = 5 | |
pipeline.spec.description.metadata.userDefined.update( | |
{"IoU threshold": str(nms.iouThreshold), "Confidence threshold": str(nms.confidenceThreshold)} | |
) | |
# Save the model | |
model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir) | |
model.input_description["image"] = "Input image" | |
model.input_description["iouThreshold"] = f"(optional) IoU threshold override (default: {nms.iouThreshold})" | |
model.input_description["confidenceThreshold"] = ( | |
f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})" | |
) | |
model.output_description["confidence"] = 'Boxes Γ Class confidence (see user-defined metadata "classes")' | |
model.output_description["coordinates"] = "Boxes Γ [x, y, width, height] (relative to image size)" | |
LOGGER.info(f"{prefix} pipeline success") | |
return model | |
def add_callback(self, event: str, callback): | |
"""Appends the given callback.""" | |
self.callbacks[event].append(callback) | |
def run_callbacks(self, event: str): | |
"""Execute all callbacks for a given event.""" | |
for callback in self.callbacks.get(event, []): | |
callback(self) | |
class IOSDetectModel(torch.nn.Module): | |
"""Wrap an Ultralytics YOLO model for Apple iOS CoreML export.""" | |
def __init__(self, model, im): | |
"""Initialize the IOSDetectModel class with a YOLO model and example image.""" | |
super().__init__() | |
_, _, h, w = im.shape # batch, channel, height, width | |
self.model = model | |
self.nc = len(model.names) # number of classes | |
if w == h: | |
self.normalize = 1.0 / w # scalar | |
else: | |
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller) | |
def forward(self, x): | |
"""Normalize predictions of object detection model with input size-dependent factors.""" | |
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1) | |
return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4) | |