Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from functools import partial | |
from pathlib import Path | |
import torch | |
from ultralytics.utils import IterableSimpleNamespace, yaml_load | |
from ultralytics.utils.checks import check_yaml | |
from .bot_sort import BOTSORT | |
from .byte_tracker import BYTETracker | |
# A mapping of tracker types to corresponding tracker classes | |
TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT} | |
def on_predict_start(predictor: object, persist: bool = False) -> None: | |
""" | |
Initialize trackers for object tracking during prediction. | |
Args: | |
predictor (object): The predictor object to initialize trackers for. | |
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False. | |
Raises: | |
AssertionError: If the tracker_type is not 'bytetrack' or 'botsort'. | |
""" | |
if hasattr(predictor, "trackers") and persist: | |
return | |
tracker = check_yaml(predictor.args.tracker) | |
cfg = IterableSimpleNamespace(**yaml_load(tracker)) | |
if cfg.tracker_type not in ["bytetrack", "botsort"]: | |
raise AssertionError(f"Only 'bytetrack' and 'botsort' are supported for now, but got '{cfg.tracker_type}'") | |
trackers = [] | |
for _ in range(predictor.dataset.bs): | |
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30) | |
trackers.append(tracker) | |
if predictor.dataset.mode != "stream": # only need one tracker for other modes. | |
break | |
predictor.trackers = trackers | |
predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video | |
def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None: | |
""" | |
Postprocess detected boxes and update with object tracking. | |
Args: | |
predictor (object): The predictor object containing the predictions. | |
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False. | |
""" | |
path, im0s = predictor.batch[:2] | |
is_obb = predictor.args.task == "obb" | |
is_stream = predictor.dataset.mode == "stream" | |
for i in range(len(im0s)): | |
tracker = predictor.trackers[i if is_stream else 0] | |
vid_path = predictor.save_dir / Path(path[i]).name | |
if not persist and predictor.vid_path[i if is_stream else 0] != vid_path: | |
tracker.reset() | |
predictor.vid_path[i if is_stream else 0] = vid_path | |
det = (predictor.results[i].obb if is_obb else predictor.results[i].boxes).cpu().numpy() | |
if len(det) == 0: | |
continue | |
tracks = tracker.update(det, im0s[i]) | |
if len(tracks) == 0: | |
continue | |
idx = tracks[:, -1].astype(int) | |
predictor.results[i] = predictor.results[i][idx] | |
update_args = dict() | |
update_args["obb" if is_obb else "boxes"] = torch.as_tensor(tracks[:, :-1]) | |
predictor.results[i].update(**update_args) | |
def register_tracker(model: object, persist: bool) -> None: | |
""" | |
Register tracking callbacks to the model for object tracking during prediction. | |
Args: | |
model (object): The model object to register tracking callbacks for. | |
persist (bool): Whether to persist the trackers if they already exist. | |
""" | |
model.add_callback("on_predict_start", partial(on_predict_start, persist=persist)) | |
model.add_callback("on_predict_postprocess_end", partial(on_predict_postprocess_end, persist=persist)) | |