Spaces:
Sleeping
Sleeping
# Ultralytics YOLO ๐, AGPL-3.0 license | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from ultralytics.models.yolo.detect import DetectionValidator | |
from ultralytics.utils import LOGGER, ops | |
from ultralytics.utils.checks import check_requirements | |
from ultralytics.utils.metrics import OKS_SIGMA, PoseMetrics, box_iou, kpt_iou | |
from ultralytics.utils.plotting import output_to_target, plot_images | |
class PoseValidator(DetectionValidator): | |
""" | |
A class extending the DetectionValidator class for validation based on a pose model. | |
Example: | |
```python | |
from ultralytics.models.yolo.pose import PoseValidator | |
args = dict(model='yolov8n-pose.pt', data='coco8-pose.yaml') | |
validator = PoseValidator(args=args) | |
validator() | |
``` | |
""" | |
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): | |
"""Initialize a 'PoseValidator' object with custom parameters and assigned attributes.""" | |
super().__init__(dataloader, save_dir, pbar, args, _callbacks) | |
self.sigma = None | |
self.kpt_shape = None | |
self.args.task = "pose" | |
self.metrics = PoseMetrics(save_dir=self.save_dir, on_plot=self.on_plot) | |
if isinstance(self.args.device, str) and self.args.device.lower() == "mps": | |
LOGGER.warning( | |
"WARNING โ ๏ธ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. " | |
"See https://github.com/ultralytics/ultralytics/issues/4031." | |
) | |
def preprocess(self, batch): | |
"""Preprocesses the batch by converting the 'keypoints' data into a float and moving it to the device.""" | |
batch = super().preprocess(batch) | |
batch["keypoints"] = batch["keypoints"].to(self.device).float() | |
return batch | |
def get_desc(self): | |
"""Returns description of evaluation metrics in string format.""" | |
return ("%22s" + "%11s" * 10) % ( | |
"Class", | |
"Images", | |
"Instances", | |
"Box(P", | |
"R", | |
"mAP50", | |
"mAP50-95)", | |
"Pose(P", | |
"R", | |
"mAP50", | |
"mAP50-95)", | |
) | |
def postprocess(self, preds): | |
"""Apply non-maximum suppression and return detections with high confidence scores.""" | |
return ops.non_max_suppression( | |
preds, | |
self.args.conf, | |
self.args.iou, | |
labels=self.lb, | |
multi_label=True, | |
agnostic=self.args.single_cls, | |
max_det=self.args.max_det, | |
nc=self.nc, | |
) | |
def init_metrics(self, model): | |
"""Initiate pose estimation metrics for YOLO model.""" | |
super().init_metrics(model) | |
self.kpt_shape = self.data["kpt_shape"] | |
is_pose = self.kpt_shape == [17, 3] | |
nkpt = self.kpt_shape[0] | |
self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt | |
self.stats = dict(tp_p=[], tp=[], conf=[], pred_cls=[], target_cls=[]) | |
def _prepare_batch(self, si, batch): | |
"""Prepares a batch for processing by converting keypoints to float and moving to device.""" | |
pbatch = super()._prepare_batch(si, batch) | |
kpts = batch["keypoints"][batch["batch_idx"] == si] | |
h, w = pbatch["imgsz"] | |
kpts = kpts.clone() | |
kpts[..., 0] *= w | |
kpts[..., 1] *= h | |
kpts = ops.scale_coords(pbatch["imgsz"], kpts, pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"]) | |
pbatch["kpts"] = kpts | |
return pbatch | |
def _prepare_pred(self, pred, pbatch): | |
"""Prepares and scales keypoints in a batch for pose processing.""" | |
predn = super()._prepare_pred(pred, pbatch) | |
nk = pbatch["kpts"].shape[1] | |
pred_kpts = predn[:, 6:].view(len(predn), nk, -1) | |
ops.scale_coords(pbatch["imgsz"], pred_kpts, pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"]) | |
return predn, pred_kpts | |
def update_metrics(self, preds, batch): | |
"""Metrics.""" | |
for si, pred in enumerate(preds): | |
self.seen += 1 | |
npr = len(pred) | |
stat = dict( | |
conf=torch.zeros(0, device=self.device), | |
pred_cls=torch.zeros(0, device=self.device), | |
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), | |
tp_p=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), | |
) | |
pbatch = self._prepare_batch(si, batch) | |
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox") | |
nl = len(cls) | |
stat["target_cls"] = cls | |
if npr == 0: | |
if nl: | |
for k in self.stats.keys(): | |
self.stats[k].append(stat[k]) | |
if self.args.plots: | |
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls) | |
continue | |
# Predictions | |
if self.args.single_cls: | |
pred[:, 5] = 0 | |
predn, pred_kpts = self._prepare_pred(pred, pbatch) | |
stat["conf"] = predn[:, 4] | |
stat["pred_cls"] = predn[:, 5] | |
# Evaluate | |
if nl: | |
stat["tp"] = self._process_batch(predn, bbox, cls) | |
stat["tp_p"] = self._process_batch(predn, bbox, cls, pred_kpts, pbatch["kpts"]) | |
if self.args.plots: | |
self.confusion_matrix.process_batch(predn, bbox, cls) | |
for k in self.stats.keys(): | |
self.stats[k].append(stat[k]) | |
# Save | |
if self.args.save_json: | |
self.pred_to_json(predn, batch["im_file"][si]) | |
# if self.args.save_txt: | |
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') | |
def _process_batch(self, detections, gt_bboxes, gt_cls, pred_kpts=None, gt_kpts=None): | |
""" | |
Return correct prediction matrix. | |
Args: | |
detections (torch.Tensor): Tensor of shape [N, 6] representing detections. | |
Each detection is of the format: x1, y1, x2, y2, conf, class. | |
labels (torch.Tensor): Tensor of shape [M, 5] representing labels. | |
Each label is of the format: class, x1, y1, x2, y2. | |
pred_kpts (torch.Tensor, optional): Tensor of shape [N, 51] representing predicted keypoints. | |
51 corresponds to 17 keypoints each with 3 values. | |
gt_kpts (torch.Tensor, optional): Tensor of shape [N, 51] representing ground truth keypoints. | |
Returns: | |
torch.Tensor: Correct prediction matrix of shape [N, 10] for 10 IoU levels. | |
""" | |
if pred_kpts is not None and gt_kpts is not None: | |
# `0.53` is from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384 | |
area = ops.xyxy2xywh(gt_bboxes)[:, 2:].prod(1) * 0.53 | |
iou = kpt_iou(gt_kpts, pred_kpts, sigma=self.sigma, area=area) | |
else: # boxes | |
iou = box_iou(gt_bboxes, detections[:, :4]) | |
return self.match_predictions(detections[:, 5], gt_cls, iou) | |
def plot_val_samples(self, batch, ni): | |
"""Plots and saves validation set samples with predicted bounding boxes and keypoints.""" | |
plot_images( | |
batch["img"], | |
batch["batch_idx"], | |
batch["cls"].squeeze(-1), | |
batch["bboxes"], | |
kpts=batch["keypoints"], | |
paths=batch["im_file"], | |
fname=self.save_dir / f"val_batch{ni}_labels.jpg", | |
names=self.names, | |
on_plot=self.on_plot, | |
) | |
def plot_predictions(self, batch, preds, ni): | |
"""Plots predictions for YOLO model.""" | |
pred_kpts = torch.cat([p[:, 6:].view(-1, *self.kpt_shape) for p in preds], 0) | |
plot_images( | |
batch["img"], | |
*output_to_target(preds, max_det=self.args.max_det), | |
kpts=pred_kpts, | |
paths=batch["im_file"], | |
fname=self.save_dir / f"val_batch{ni}_pred.jpg", | |
names=self.names, | |
on_plot=self.on_plot, | |
) # pred | |
def pred_to_json(self, predn, filename): | |
"""Converts YOLO predictions to COCO JSON format.""" | |
stem = Path(filename).stem | |
image_id = int(stem) if stem.isnumeric() else stem | |
box = ops.xyxy2xywh(predn[:, :4]) # xywh | |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
for p, b in zip(predn.tolist(), box.tolist()): | |
self.jdict.append( | |
{ | |
"image_id": image_id, | |
"category_id": self.class_map[int(p[5])], | |
"bbox": [round(x, 3) for x in b], | |
"keypoints": p[6:], | |
"score": round(p[4], 5), | |
} | |
) | |
def eval_json(self, stats): | |
"""Evaluates object detection model using COCO JSON format.""" | |
if self.args.save_json and self.is_coco and len(self.jdict): | |
anno_json = self.data["path"] / "annotations/person_keypoints_val2017.json" # annotations | |
pred_json = self.save_dir / "predictions.json" # predictions | |
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...") | |
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
check_requirements("pycocotools>=2.0.6") | |
from pycocotools.coco import COCO # noqa | |
from pycocotools.cocoeval import COCOeval # noqa | |
for x in anno_json, pred_json: | |
assert x.is_file(), f"{x} file not found" | |
anno = COCO(str(anno_json)) # init annotations api | |
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) | |
for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "keypoints")]): | |
if self.is_coco: | |
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval | |
eval.evaluate() | |
eval.accumulate() | |
eval.summarize() | |
idx = i * 4 + 2 | |
stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[ | |
:2 | |
] # update mAP50-95 and mAP50 | |
except Exception as e: | |
LOGGER.warning(f"pycocotools unable to run: {e}") | |
return stats | |