Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from copy import copy | |
from ultralytics.models import yolo | |
from ultralytics.nn.tasks import PoseModel | |
from ultralytics.utils import DEFAULT_CFG, LOGGER | |
from ultralytics.utils.plotting import plot_images, plot_results | |
class PoseTrainer(yolo.detect.DetectionTrainer): | |
""" | |
A class extending the DetectionTrainer class for training based on a pose model. | |
Example: | |
```python | |
from ultralytics.models.yolo.pose import PoseTrainer | |
args = dict(model='yolov8n-pose.pt', data='coco8-pose.yaml', epochs=3) | |
trainer = PoseTrainer(overrides=args) | |
trainer.train() | |
``` | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
"""Initialize a PoseTrainer object with specified configurations and overrides.""" | |
if overrides is None: | |
overrides = {} | |
overrides["task"] = "pose" | |
super().__init__(cfg, overrides, _callbacks) | |
if isinstance(self.args.device, str) and self.args.device.lower() == "mps": | |
LOGGER.warning( | |
"WARNING β οΈ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. " | |
"See https://github.com/ultralytics/ultralytics/issues/4031." | |
) | |
def get_model(self, cfg=None, weights=None, verbose=True): | |
"""Get pose estimation model with specified configuration and weights.""" | |
model = PoseModel(cfg, ch=3, nc=self.data["nc"], data_kpt_shape=self.data["kpt_shape"], verbose=verbose) | |
if weights: | |
model.load(weights) | |
return model | |
def set_model_attributes(self): | |
"""Sets keypoints shape attribute of PoseModel.""" | |
super().set_model_attributes() | |
self.model.kpt_shape = self.data["kpt_shape"] | |
def get_validator(self): | |
"""Returns an instance of the PoseValidator class for validation.""" | |
self.loss_names = "box_loss", "pose_loss", "kobj_loss", "cls_loss", "dfl_loss" | |
return yolo.pose.PoseValidator( | |
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks | |
) | |
def plot_training_samples(self, batch, ni): | |
"""Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints.""" | |
images = batch["img"] | |
kpts = batch["keypoints"] | |
cls = batch["cls"].squeeze(-1) | |
bboxes = batch["bboxes"] | |
paths = batch["im_file"] | |
batch_idx = batch["batch_idx"] | |
plot_images( | |
images, | |
batch_idx, | |
cls, | |
bboxes, | |
kpts=kpts, | |
paths=paths, | |
fname=self.save_dir / f"train_batch{ni}.jpg", | |
on_plot=self.on_plot, | |
) | |
def plot_metrics(self): | |
"""Plots training/val metrics.""" | |
plot_results(file=self.csv, pose=True, on_plot=self.on_plot) # save results.png | |