Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import math | |
import random | |
from copy import copy | |
import numpy as np | |
import torch.nn as nn | |
from ultralytics.data import build_dataloader, build_yolo_dataset | |
from ultralytics.engine.trainer import BaseTrainer | |
from ultralytics.models import yolo | |
from ultralytics.nn.tasks import DetectionModel | |
from ultralytics.utils import LOGGER, RANK | |
from ultralytics.utils.plotting import plot_images, plot_labels, plot_results | |
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first | |
class DetectionTrainer(BaseTrainer): | |
""" | |
A class extending the BaseTrainer class for training based on a detection model. | |
Example: | |
```python | |
from ultralytics.models.yolo.detect import DetectionTrainer | |
args = dict(model='yolov8n.pt', data='coco8.yaml', epochs=3) | |
trainer = DetectionTrainer(overrides=args) | |
trainer.train() | |
``` | |
""" | |
def build_dataset(self, img_path, mode="train", batch=None): | |
""" | |
Build YOLO Dataset. | |
Args: | |
img_path (str): Path to the folder containing images. | |
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. | |
batch (int, optional): Size of batches, this is for `rect`. Defaults to None. | |
""" | |
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) | |
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs) | |
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"): | |
"""Construct and return dataloader.""" | |
assert mode in ["train", "val"] | |
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP | |
dataset = self.build_dataset(dataset_path, mode, batch_size) | |
shuffle = mode == "train" | |
if getattr(dataset, "rect", False) and shuffle: | |
LOGGER.warning("WARNING β οΈ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False") | |
shuffle = False | |
workers = self.args.workers if mode == "train" else self.args.workers * 2 | |
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader | |
def preprocess_batch(self, batch): | |
"""Preprocesses a batch of images by scaling and converting to float.""" | |
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255 | |
if self.args.multi_scale: | |
imgs = batch["img"] | |
sz = ( | |
random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride) | |
// self.stride | |
* self.stride | |
) # size | |
sf = sz / max(imgs.shape[2:]) # scale factor | |
if sf != 1: | |
ns = [ | |
math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:] | |
] # new shape (stretched to gs-multiple) | |
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False) | |
batch["img"] = imgs | |
return batch | |
def set_model_attributes(self): | |
"""Nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps).""" | |
# self.args.box *= 3 / nl # scale to layers | |
# self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers | |
# self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl # scale to image size and layers | |
self.model.nc = self.data["nc"] # attach number of classes to model | |
self.model.names = self.data["names"] # attach class names to model | |
self.model.args = self.args # attach hyperparameters to model | |
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc | |
def get_model(self, cfg=None, weights=None, verbose=True): | |
"""Return a YOLO detection model.""" | |
model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1) | |
if weights: | |
model.load(weights) | |
return model | |
def get_validator(self): | |
"""Returns a DetectionValidator for YOLO model validation.""" | |
self.loss_names = "box_loss", "cls_loss", "dfl_loss" | |
return yolo.detect.DetectionValidator( | |
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks | |
) | |
def label_loss_items(self, loss_items=None, prefix="train"): | |
""" | |
Returns a loss dict with labelled training loss items tensor. | |
Not needed for classification but necessary for segmentation & detection | |
""" | |
keys = [f"{prefix}/{x}" for x in self.loss_names] | |
if loss_items is not None: | |
loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats | |
return dict(zip(keys, loss_items)) | |
else: | |
return keys | |
def progress_string(self): | |
"""Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size.""" | |
return ("\n" + "%11s" * (4 + len(self.loss_names))) % ( | |
"Epoch", | |
"GPU_mem", | |
*self.loss_names, | |
"Instances", | |
"Size", | |
) | |
def plot_training_samples(self, batch, ni): | |
"""Plots training samples with their annotations.""" | |
plot_images( | |
images=batch["img"], | |
batch_idx=batch["batch_idx"], | |
cls=batch["cls"].squeeze(-1), | |
bboxes=batch["bboxes"], | |
paths=batch["im_file"], | |
fname=self.save_dir / f"train_batch{ni}.jpg", | |
on_plot=self.on_plot, | |
) | |
def plot_metrics(self): | |
"""Plots metrics from a CSV file.""" | |
plot_results(file=self.csv, on_plot=self.on_plot) # save results.png | |
def plot_training_labels(self): | |
"""Create a labeled training plot of the YOLO model.""" | |
boxes = np.concatenate([lb["bboxes"] for lb in self.train_loader.dataset.labels], 0) | |
cls = np.concatenate([lb["cls"] for lb in self.train_loader.dataset.labels], 0) | |
plot_labels(boxes, cls.squeeze(), names=self.data["names"], save_dir=self.save_dir, on_plot=self.on_plot) | |