Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import torch | |
import torchvision | |
from ultralytics.data import ClassificationDataset, build_dataloader | |
from ultralytics.engine.trainer import BaseTrainer | |
from ultralytics.models import yolo | |
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight | |
from ultralytics.utils import DEFAULT_CFG, LOGGER, RANK, colorstr | |
from ultralytics.utils.plotting import plot_images, plot_results | |
from ultralytics.utils.torch_utils import is_parallel, strip_optimizer, torch_distributed_zero_first | |
class ClassificationTrainer(BaseTrainer): | |
""" | |
A class extending the BaseTrainer class for training based on a classification model. | |
Notes: | |
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'. | |
Example: | |
```python | |
from ultralytics.models.yolo.classify import ClassificationTrainer | |
args = dict(model='yolov8n-cls.pt', data='imagenet10', epochs=3) | |
trainer = ClassificationTrainer(overrides=args) | |
trainer.train() | |
``` | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
"""Initialize a ClassificationTrainer object with optional configuration overrides and callbacks.""" | |
if overrides is None: | |
overrides = {} | |
overrides["task"] = "classify" | |
if overrides.get("imgsz") is None: | |
overrides["imgsz"] = 224 | |
super().__init__(cfg, overrides, _callbacks) | |
def set_model_attributes(self): | |
"""Set the YOLO model's class names from the loaded dataset.""" | |
self.model.names = self.data["names"] | |
def get_model(self, cfg=None, weights=None, verbose=True): | |
"""Returns a modified PyTorch model configured for training YOLO.""" | |
model = ClassificationModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1) | |
if weights: | |
model.load(weights) | |
for m in model.modules(): | |
if not self.args.pretrained and hasattr(m, "reset_parameters"): | |
m.reset_parameters() | |
if isinstance(m, torch.nn.Dropout) and self.args.dropout: | |
m.p = self.args.dropout # set dropout | |
for p in model.parameters(): | |
p.requires_grad = True # for training | |
return model | |
def setup_model(self): | |
"""Load, create or download model for any task.""" | |
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed | |
return | |
model, ckpt = str(self.model), None | |
# Load a YOLO model locally, from torchvision, or from Ultralytics assets | |
if model.endswith(".pt"): | |
self.model, ckpt = attempt_load_one_weight(model, device="cpu") | |
for p in self.model.parameters(): | |
p.requires_grad = True # for training | |
elif model.split(".")[-1] in ("yaml", "yml"): | |
self.model = self.get_model(cfg=model) | |
elif model in torchvision.models.__dict__: | |
self.model = torchvision.models.__dict__[model](weights="IMAGENET1K_V1" if self.args.pretrained else None) | |
else: | |
raise FileNotFoundError(f"ERROR: model={model} not found locally or online. Please check model name.") | |
ClassificationModel.reshape_outputs(self.model, self.data["nc"]) | |
return ckpt | |
def build_dataset(self, img_path, mode="train", batch=None): | |
"""Creates a ClassificationDataset instance given an image path, and mode (train/test etc.).""" | |
return ClassificationDataset(root=img_path, args=self.args, augment=mode == "train", prefix=mode) | |
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"): | |
"""Returns PyTorch DataLoader with transforms to preprocess images for inference.""" | |
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP | |
dataset = self.build_dataset(dataset_path, mode) | |
loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank) | |
# Attach inference transforms | |
if mode != "train": | |
if is_parallel(self.model): | |
self.model.module.transforms = loader.dataset.torch_transforms | |
else: | |
self.model.transforms = loader.dataset.torch_transforms | |
return loader | |
def preprocess_batch(self, batch): | |
"""Preprocesses a batch of images and classes.""" | |
batch["img"] = batch["img"].to(self.device) | |
batch["cls"] = batch["cls"].to(self.device) | |
return batch | |
def progress_string(self): | |
"""Returns a formatted string showing training progress.""" | |
return ("\n" + "%11s" * (4 + len(self.loss_names))) % ( | |
"Epoch", | |
"GPU_mem", | |
*self.loss_names, | |
"Instances", | |
"Size", | |
) | |
def get_validator(self): | |
"""Returns an instance of ClassificationValidator for validation.""" | |
self.loss_names = ["loss"] | |
return yolo.classify.ClassificationValidator(self.test_loader, self.save_dir, _callbacks=self.callbacks) | |
def label_loss_items(self, loss_items=None, prefix="train"): | |
""" | |
Returns a loss dict with labelled training loss items tensor. | |
Not needed for classification but necessary for segmentation & detection | |
""" | |
keys = [f"{prefix}/{x}" for x in self.loss_names] | |
if loss_items is None: | |
return keys | |
loss_items = [round(float(loss_items), 5)] | |
return dict(zip(keys, loss_items)) | |
def plot_metrics(self): | |
"""Plots metrics from a CSV file.""" | |
plot_results(file=self.csv, classify=True, on_plot=self.on_plot) # save results.png | |
def final_eval(self): | |
"""Evaluate trained model and save validation results.""" | |
for f in self.last, self.best: | |
if f.exists(): | |
strip_optimizer(f) # strip optimizers | |
if f is self.best: | |
LOGGER.info(f"\nValidating {f}...") | |
self.validator.args.data = self.args.data | |
self.validator.args.plots = self.args.plots | |
self.metrics = self.validator(model=f) | |
self.metrics.pop("fitness", None) | |
self.run_callbacks("on_fit_epoch_end") | |
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}") | |
def plot_training_samples(self, batch, ni): | |
"""Plots training samples with their annotations.""" | |
plot_images( | |
images=batch["img"], | |
batch_idx=torch.arange(len(batch["img"])), | |
cls=batch["cls"].view(-1), # warning: use .view(), not .squeeze() for Classify models | |
fname=self.save_dir / f"train_batch{ni}.jpg", | |
on_plot=self.on_plot, | |
) | |