Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import cv2 | |
import torch | |
from PIL import Image | |
from ultralytics.engine.predictor import BasePredictor | |
from ultralytics.engine.results import Results | |
from ultralytics.utils import DEFAULT_CFG, ops | |
class ClassificationPredictor(BasePredictor): | |
""" | |
A class extending the BasePredictor class for prediction based on a classification model. | |
Notes: | |
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'. | |
Example: | |
```python | |
from ultralytics.utils import ASSETS | |
from ultralytics.models.yolo.classify import ClassificationPredictor | |
args = dict(model='yolov8n-cls.pt', source=ASSETS) | |
predictor = ClassificationPredictor(overrides=args) | |
predictor.predict_cli() | |
``` | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
"""Initializes ClassificationPredictor setting the task to 'classify'.""" | |
super().__init__(cfg, overrides, _callbacks) | |
self.args.task = "classify" | |
self._legacy_transform_name = "ultralytics.yolo.data.augment.ToTensor" | |
def preprocess(self, img): | |
"""Converts input image to model-compatible data type.""" | |
if not isinstance(img, torch.Tensor): | |
is_legacy_transform = any( | |
self._legacy_transform_name in str(transform) for transform in self.transforms.transforms | |
) | |
if is_legacy_transform: # to handle legacy transforms | |
img = torch.stack([self.transforms(im) for im in img], dim=0) | |
else: | |
img = torch.stack( | |
[self.transforms(Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))) for im in img], dim=0 | |
) | |
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device) | |
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 | |
def postprocess(self, preds, img, orig_imgs): | |
"""Post-processes predictions to return Results objects.""" | |
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list | |
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) | |
results = [] | |
for i, pred in enumerate(preds): | |
orig_img = orig_imgs[i] | |
img_path = self.batch[0][i] | |
results.append(Results(orig_img, path=img_path, names=self.model.names, probs=pred)) | |
return results | |