Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import glob | |
import math | |
import os | |
import time | |
from dataclasses import dataclass | |
from pathlib import Path | |
from threading import Thread | |
from urllib.parse import urlparse | |
import cv2 | |
import numpy as np | |
import requests | |
import torch | |
from PIL import Image | |
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS | |
from ultralytics.utils import LOGGER, is_colab, is_kaggle, ops | |
from ultralytics.utils.checks import check_requirements | |
class SourceTypes: | |
"""Class to represent various types of input sources for predictions.""" | |
stream: bool = False | |
screenshot: bool = False | |
from_img: bool = False | |
tensor: bool = False | |
class LoadStreams: | |
""" | |
Stream Loader for various types of video streams, Supports RTSP, RTMP, HTTP, and TCP streams. | |
Attributes: | |
sources (str): The source input paths or URLs for the video streams. | |
vid_stride (int): Video frame-rate stride, defaults to 1. | |
buffer (bool): Whether to buffer input streams, defaults to False. | |
running (bool): Flag to indicate if the streaming thread is running. | |
mode (str): Set to 'stream' indicating real-time capture. | |
imgs (list): List of image frames for each stream. | |
fps (list): List of FPS for each stream. | |
frames (list): List of total frames for each stream. | |
threads (list): List of threads for each stream. | |
shape (list): List of shapes for each stream. | |
caps (list): List of cv2.VideoCapture objects for each stream. | |
bs (int): Batch size for processing. | |
Methods: | |
__init__: Initialize the stream loader. | |
update: Read stream frames in daemon thread. | |
close: Close stream loader and release resources. | |
__iter__: Returns an iterator object for the class. | |
__next__: Returns source paths, transformed, and original images for processing. | |
__len__: Return the length of the sources object. | |
Example: | |
```bash | |
yolo predict source='rtsp://example.com/media.mp4' | |
``` | |
""" | |
def __init__(self, sources="file.streams", vid_stride=1, buffer=False): | |
"""Initialize instance variables and check for consistent input stream shapes.""" | |
torch.backends.cudnn.benchmark = True # faster for fixed-size inference | |
self.buffer = buffer # buffer input streams | |
self.running = True # running flag for Thread | |
self.mode = "stream" | |
self.vid_stride = vid_stride # video frame-rate stride | |
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources] | |
n = len(sources) | |
self.bs = n | |
self.fps = [0] * n # frames per second | |
self.frames = [0] * n | |
self.threads = [None] * n | |
self.caps = [None] * n # video capture objects | |
self.imgs = [[] for _ in range(n)] # images | |
self.shape = [[] for _ in range(n)] # image shapes | |
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later | |
for i, s in enumerate(sources): # index, source | |
# Start thread to read frames from video stream | |
st = f"{i + 1}/{n}: {s}... " | |
if urlparse(s).hostname in ("www.youtube.com", "youtube.com", "youtu.be"): # if source is YouTube video | |
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/LNwODJXcvt4' | |
s = get_best_youtube_url(s) | |
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam | |
if s == 0 and (is_colab() or is_kaggle()): | |
raise NotImplementedError( | |
"'source=0' webcam not supported in Colab and Kaggle notebooks. " | |
"Try running 'source=0' in a local environment." | |
) | |
self.caps[i] = cv2.VideoCapture(s) # store video capture object | |
if not self.caps[i].isOpened(): | |
raise ConnectionError(f"{st}Failed to open {s}") | |
w = int(self.caps[i].get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h = int(self.caps[i].get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = self.caps[i].get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan | |
self.frames[i] = max(int(self.caps[i].get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float( | |
"inf" | |
) # infinite stream fallback | |
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback | |
success, im = self.caps[i].read() # guarantee first frame | |
if not success or im is None: | |
raise ConnectionError(f"{st}Failed to read images from {s}") | |
self.imgs[i].append(im) | |
self.shape[i] = im.shape | |
self.threads[i] = Thread(target=self.update, args=([i, self.caps[i], s]), daemon=True) | |
LOGGER.info(f"{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)") | |
self.threads[i].start() | |
LOGGER.info("") # newline | |
def update(self, i, cap, stream): | |
"""Read stream `i` frames in daemon thread.""" | |
n, f = 0, self.frames[i] # frame number, frame array | |
while self.running and cap.isOpened() and n < (f - 1): | |
if len(self.imgs[i]) < 30: # keep a <=30-image buffer | |
n += 1 | |
cap.grab() # .read() = .grab() followed by .retrieve() | |
if n % self.vid_stride == 0: | |
success, im = cap.retrieve() | |
if not success: | |
im = np.zeros(self.shape[i], dtype=np.uint8) | |
LOGGER.warning("WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.") | |
cap.open(stream) # re-open stream if signal was lost | |
if self.buffer: | |
self.imgs[i].append(im) | |
else: | |
self.imgs[i] = [im] | |
else: | |
time.sleep(0.01) # wait until the buffer is empty | |
def close(self): | |
"""Close stream loader and release resources.""" | |
self.running = False # stop flag for Thread | |
for thread in self.threads: | |
if thread.is_alive(): | |
thread.join(timeout=5) # Add timeout | |
for cap in self.caps: # Iterate through the stored VideoCapture objects | |
try: | |
cap.release() # release video capture | |
except Exception as e: | |
LOGGER.warning(f"WARNING ⚠️ Could not release VideoCapture object: {e}") | |
cv2.destroyAllWindows() | |
def __iter__(self): | |
"""Iterates through YOLO image feed and re-opens unresponsive streams.""" | |
self.count = -1 | |
return self | |
def __next__(self): | |
"""Returns source paths, transformed and original images for processing.""" | |
self.count += 1 | |
images = [] | |
for i, x in enumerate(self.imgs): | |
# Wait until a frame is available in each buffer | |
while not x: | |
if not self.threads[i].is_alive() or cv2.waitKey(1) == ord("q"): # q to quit | |
self.close() | |
raise StopIteration | |
time.sleep(1 / min(self.fps)) | |
x = self.imgs[i] | |
if not x: | |
LOGGER.warning(f"WARNING ⚠️ Waiting for stream {i}") | |
# Get and remove the first frame from imgs buffer | |
if self.buffer: | |
images.append(x.pop(0)) | |
# Get the last frame, and clear the rest from the imgs buffer | |
else: | |
images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8)) | |
x.clear() | |
return self.sources, images, [""] * self.bs | |
def __len__(self): | |
"""Return the length of the sources object.""" | |
return self.bs # 1E12 frames = 32 streams at 30 FPS for 30 years | |
class LoadScreenshots: | |
""" | |
YOLOv8 screenshot dataloader. | |
This class manages the loading of screenshot images for processing with YOLOv8. | |
Suitable for use with `yolo predict source=screen`. | |
Attributes: | |
source (str): The source input indicating which screen to capture. | |
screen (int): The screen number to capture. | |
left (int): The left coordinate for screen capture area. | |
top (int): The top coordinate for screen capture area. | |
width (int): The width of the screen capture area. | |
height (int): The height of the screen capture area. | |
mode (str): Set to 'stream' indicating real-time capture. | |
frame (int): Counter for captured frames. | |
sct (mss.mss): Screen capture object from `mss` library. | |
bs (int): Batch size, set to 1. | |
monitor (dict): Monitor configuration details. | |
Methods: | |
__iter__: Returns an iterator object. | |
__next__: Captures the next screenshot and returns it. | |
""" | |
def __init__(self, source): | |
"""Source = [screen_number left top width height] (pixels).""" | |
check_requirements("mss") | |
import mss # noqa | |
source, *params = source.split() | |
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0 | |
if len(params) == 1: | |
self.screen = int(params[0]) | |
elif len(params) == 4: | |
left, top, width, height = (int(x) for x in params) | |
elif len(params) == 5: | |
self.screen, left, top, width, height = (int(x) for x in params) | |
self.mode = "stream" | |
self.frame = 0 | |
self.sct = mss.mss() | |
self.bs = 1 | |
self.fps = 30 | |
# Parse monitor shape | |
monitor = self.sct.monitors[self.screen] | |
self.top = monitor["top"] if top is None else (monitor["top"] + top) | |
self.left = monitor["left"] if left is None else (monitor["left"] + left) | |
self.width = width or monitor["width"] | |
self.height = height or monitor["height"] | |
self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height} | |
def __iter__(self): | |
"""Returns an iterator of the object.""" | |
return self | |
def __next__(self): | |
"""mss screen capture: get raw pixels from the screen as np array.""" | |
im0 = np.asarray(self.sct.grab(self.monitor))[:, :, :3] # BGRA to BGR | |
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: " | |
self.frame += 1 | |
return [str(self.screen)], [im0], [s] # screen, img, string | |
class LoadImagesAndVideos: | |
""" | |
YOLOv8 image/video dataloader. | |
This class manages the loading and pre-processing of image and video data for YOLOv8. It supports loading from | |
various formats, including single image files, video files, and lists of image and video paths. | |
Attributes: | |
files (list): List of image and video file paths. | |
nf (int): Total number of files (images and videos). | |
video_flag (list): Flags indicating whether a file is a video (True) or an image (False). | |
mode (str): Current mode, 'image' or 'video'. | |
vid_stride (int): Stride for video frame-rate, defaults to 1. | |
bs (int): Batch size, set to 1 for this class. | |
cap (cv2.VideoCapture): Video capture object for OpenCV. | |
frame (int): Frame counter for video. | |
frames (int): Total number of frames in the video. | |
count (int): Counter for iteration, initialized at 0 during `__iter__()`. | |
Methods: | |
_new_video(path): Create a new cv2.VideoCapture object for a given video path. | |
""" | |
def __init__(self, path, batch=1, vid_stride=1): | |
"""Initialize the Dataloader and raise FileNotFoundError if file not found.""" | |
parent = None | |
if isinstance(path, str) and Path(path).suffix == ".txt": # *.txt file with img/vid/dir on each line | |
parent = Path(path).parent | |
path = Path(path).read_text().splitlines() # list of sources | |
files = [] | |
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]: | |
a = str(Path(p).absolute()) # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912 | |
if "*" in a: | |
files.extend(sorted(glob.glob(a, recursive=True))) # glob | |
elif os.path.isdir(a): | |
files.extend(sorted(glob.glob(os.path.join(a, "*.*")))) # dir | |
elif os.path.isfile(a): | |
files.append(a) # files (absolute or relative to CWD) | |
elif parent and (parent / p).is_file(): | |
files.append(str((parent / p).absolute())) # files (relative to *.txt file parent) | |
else: | |
raise FileNotFoundError(f"{p} does not exist") | |
images = [x for x in files if x.split(".")[-1].lower() in IMG_FORMATS] | |
videos = [x for x in files if x.split(".")[-1].lower() in VID_FORMATS] | |
ni, nv = len(images), len(videos) | |
self.files = images + videos | |
self.nf = ni + nv # number of files | |
self.ni = ni # number of images | |
self.video_flag = [False] * ni + [True] * nv | |
self.mode = "image" | |
self.vid_stride = vid_stride # video frame-rate stride | |
self.bs = batch | |
if any(videos): | |
self._new_video(videos[0]) # new video | |
else: | |
self.cap = None | |
if self.nf == 0: | |
raise FileNotFoundError( | |
f"No images or videos found in {p}. " | |
f"Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}" | |
) | |
def __iter__(self): | |
"""Returns an iterator object for VideoStream or ImageFolder.""" | |
self.count = 0 | |
return self | |
def __next__(self): | |
"""Returns the next batch of images or video frames along with their paths and metadata.""" | |
paths, imgs, info = [], [], [] | |
while len(imgs) < self.bs: | |
if self.count >= self.nf: # end of file list | |
if len(imgs) > 0: | |
return paths, imgs, info # return last partial batch | |
else: | |
raise StopIteration | |
path = self.files[self.count] | |
if self.video_flag[self.count]: | |
self.mode = "video" | |
if not self.cap or not self.cap.isOpened(): | |
self._new_video(path) | |
for _ in range(self.vid_stride): | |
success = self.cap.grab() | |
if not success: | |
break # end of video or failure | |
if success: | |
success, im0 = self.cap.retrieve() | |
if success: | |
self.frame += 1 | |
paths.append(path) | |
imgs.append(im0) | |
info.append(f"video {self.count + 1}/{self.nf} (frame {self.frame}/{self.frames}) {path}: ") | |
if self.frame == self.frames: # end of video | |
self.count += 1 | |
self.cap.release() | |
else: | |
# Move to the next file if the current video ended or failed to open | |
self.count += 1 | |
if self.cap: | |
self.cap.release() | |
if self.count < self.nf: | |
self._new_video(self.files[self.count]) | |
else: | |
self.mode = "image" | |
im0 = cv2.imread(path) # BGR | |
if im0 is None: | |
raise FileNotFoundError(f"Image Not Found {path}") | |
paths.append(path) | |
imgs.append(im0) | |
info.append(f"image {self.count + 1}/{self.nf} {path}: ") | |
self.count += 1 # move to the next file | |
if self.count >= self.ni: # end of image list | |
break | |
return paths, imgs, info | |
def _new_video(self, path): | |
"""Creates a new video capture object for the given path.""" | |
self.frame = 0 | |
self.cap = cv2.VideoCapture(path) | |
self.fps = int(self.cap.get(cv2.CAP_PROP_FPS)) | |
if not self.cap.isOpened(): | |
raise FileNotFoundError(f"Failed to open video {path}") | |
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride) | |
def __len__(self): | |
"""Returns the number of batches in the object.""" | |
return math.ceil(self.nf / self.bs) # number of files | |
class LoadPilAndNumpy: | |
""" | |
Load images from PIL and Numpy arrays for batch processing. | |
This class is designed to manage loading and pre-processing of image data from both PIL and Numpy formats. | |
It performs basic validation and format conversion to ensure that the images are in the required format for | |
downstream processing. | |
Attributes: | |
paths (list): List of image paths or autogenerated filenames. | |
im0 (list): List of images stored as Numpy arrays. | |
mode (str): Type of data being processed, defaults to 'image'. | |
bs (int): Batch size, equivalent to the length of `im0`. | |
Methods: | |
_single_check(im): Validate and format a single image to a Numpy array. | |
""" | |
def __init__(self, im0): | |
"""Initialize PIL and Numpy Dataloader.""" | |
if not isinstance(im0, list): | |
im0 = [im0] | |
self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)] | |
self.im0 = [self._single_check(im) for im in im0] | |
self.mode = "image" | |
self.bs = len(self.im0) | |
def _single_check(im): | |
"""Validate and format an image to numpy array.""" | |
assert isinstance(im, (Image.Image, np.ndarray)), f"Expected PIL/np.ndarray image type, but got {type(im)}" | |
if isinstance(im, Image.Image): | |
if im.mode != "RGB": | |
im = im.convert("RGB") | |
im = np.asarray(im)[:, :, ::-1] | |
im = np.ascontiguousarray(im) # contiguous | |
return im | |
def __len__(self): | |
"""Returns the length of the 'im0' attribute.""" | |
return len(self.im0) | |
def __next__(self): | |
"""Returns batch paths, images, processed images, None, ''.""" | |
if self.count == 1: # loop only once as it's batch inference | |
raise StopIteration | |
self.count += 1 | |
return self.paths, self.im0, [""] * self.bs | |
def __iter__(self): | |
"""Enables iteration for class LoadPilAndNumpy.""" | |
self.count = 0 | |
return self | |
class LoadTensor: | |
""" | |
Load images from torch.Tensor data. | |
This class manages the loading and pre-processing of image data from PyTorch tensors for further processing. | |
Attributes: | |
im0 (torch.Tensor): The input tensor containing the image(s). | |
bs (int): Batch size, inferred from the shape of `im0`. | |
mode (str): Current mode, set to 'image'. | |
paths (list): List of image paths or filenames. | |
count (int): Counter for iteration, initialized at 0 during `__iter__()`. | |
Methods: | |
_single_check(im, stride): Validate and possibly modify the input tensor. | |
""" | |
def __init__(self, im0) -> None: | |
"""Initialize Tensor Dataloader.""" | |
self.im0 = self._single_check(im0) | |
self.bs = self.im0.shape[0] | |
self.mode = "image" | |
self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)] | |
def _single_check(im, stride=32): | |
"""Validate and format an image to torch.Tensor.""" | |
s = ( | |
f"WARNING ⚠️ torch.Tensor inputs should be BCHW i.e. shape(1, 3, 640, 640) " | |
f"divisible by stride {stride}. Input shape{tuple(im.shape)} is incompatible." | |
) | |
if len(im.shape) != 4: | |
if len(im.shape) != 3: | |
raise ValueError(s) | |
LOGGER.warning(s) | |
im = im.unsqueeze(0) | |
if im.shape[2] % stride or im.shape[3] % stride: | |
raise ValueError(s) | |
if im.max() > 1.0 + torch.finfo(im.dtype).eps: # torch.float32 eps is 1.2e-07 | |
LOGGER.warning( | |
f"WARNING ⚠️ torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. " | |
f"Dividing input by 255." | |
) | |
im = im.float() / 255.0 | |
return im | |
def __iter__(self): | |
"""Returns an iterator object.""" | |
self.count = 0 | |
return self | |
def __next__(self): | |
"""Return next item in the iterator.""" | |
if self.count == 1: | |
raise StopIteration | |
self.count += 1 | |
return self.paths, self.im0, [""] * self.bs | |
def __len__(self): | |
"""Returns the batch size.""" | |
return self.bs | |
def autocast_list(source): | |
"""Merges a list of source of different types into a list of numpy arrays or PIL images.""" | |
files = [] | |
for im in source: | |
if isinstance(im, (str, Path)): # filename or uri | |
files.append(Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im)) | |
elif isinstance(im, (Image.Image, np.ndarray)): # PIL or np Image | |
files.append(im) | |
else: | |
raise TypeError( | |
f"type {type(im).__name__} is not a supported Ultralytics prediction source type. \n" | |
f"See https://docs.ultralytics.com/modes/predict for supported source types." | |
) | |
return files | |
def get_best_youtube_url(url, use_pafy=True): | |
""" | |
Retrieves the URL of the best quality MP4 video stream from a given YouTube video. | |
This function uses the pafy or yt_dlp library to extract the video info from YouTube. It then finds the highest | |
quality MP4 format that has video codec but no audio codec, and returns the URL of this video stream. | |
Args: | |
url (str): The URL of the YouTube video. | |
use_pafy (bool): Use the pafy package, default=True, otherwise use yt_dlp package. | |
Returns: | |
(str): The URL of the best quality MP4 video stream, or None if no suitable stream is found. | |
""" | |
if use_pafy: | |
check_requirements(("pafy", "youtube_dl==2020.12.2")) | |
import pafy # noqa | |
return pafy.new(url).getbestvideo(preftype="mp4").url | |
else: | |
check_requirements("yt-dlp") | |
import yt_dlp | |
with yt_dlp.YoutubeDL({"quiet": True}) as ydl: | |
info_dict = ydl.extract_info(url, download=False) # extract info | |
for f in reversed(info_dict.get("formats", [])): # reversed because best is usually last | |
# Find a format with video codec, no audio, *.mp4 extension at least 1920x1080 size | |
good_size = (f.get("width") or 0) >= 1920 or (f.get("height") or 0) >= 1080 | |
if good_size and f["vcodec"] != "none" and f["acodec"] == "none" and f["ext"] == "mp4": | |
return f.get("url") | |
# Define constants | |
LOADERS = (LoadStreams, LoadPilAndNumpy, LoadImagesAndVideos, LoadScreenshots) | |