Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import numpy as np | |
import scipy | |
from scipy.spatial.distance import cdist | |
from ultralytics.utils.metrics import bbox_ioa, batch_probiou | |
try: | |
import lap # for linear_assignment | |
assert lap.__version__ # verify package is not directory | |
except (ImportError, AssertionError, AttributeError): | |
from ultralytics.utils.checks import check_requirements | |
check_requirements("lapx>=0.5.2") # update to lap package from https://github.com/rathaROG/lapx | |
import lap | |
def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple: | |
""" | |
Perform linear assignment using scipy or lap.lapjv. | |
Args: | |
cost_matrix (np.ndarray): The matrix containing cost values for assignments. | |
thresh (float): Threshold for considering an assignment valid. | |
use_lap (bool, optional): Whether to use lap.lapjv. Defaults to True. | |
Returns: | |
Tuple with: | |
- matched indices | |
- unmatched indices from 'a' | |
- unmatched indices from 'b' | |
""" | |
if cost_matrix.size == 0: | |
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1])) | |
if use_lap: | |
# Use lap.lapjv | |
# https://github.com/gatagat/lap | |
_, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh) | |
matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0] | |
unmatched_a = np.where(x < 0)[0] | |
unmatched_b = np.where(y < 0)[0] | |
else: | |
# Use scipy.optimize.linear_sum_assignment | |
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html | |
x, y = scipy.optimize.linear_sum_assignment(cost_matrix) # row x, col y | |
matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh]) | |
if len(matches) == 0: | |
unmatched_a = list(np.arange(cost_matrix.shape[0])) | |
unmatched_b = list(np.arange(cost_matrix.shape[1])) | |
else: | |
unmatched_a = list(set(np.arange(cost_matrix.shape[0])) - set(matches[:, 0])) | |
unmatched_b = list(set(np.arange(cost_matrix.shape[1])) - set(matches[:, 1])) | |
return matches, unmatched_a, unmatched_b | |
def iou_distance(atracks: list, btracks: list) -> np.ndarray: | |
""" | |
Compute cost based on Intersection over Union (IoU) between tracks. | |
Args: | |
atracks (list[STrack] | list[np.ndarray]): List of tracks 'a' or bounding boxes. | |
btracks (list[STrack] | list[np.ndarray]): List of tracks 'b' or bounding boxes. | |
Returns: | |
(np.ndarray): Cost matrix computed based on IoU. | |
""" | |
if atracks and isinstance(atracks[0], np.ndarray) or btracks and isinstance(btracks[0], np.ndarray): | |
atlbrs = atracks | |
btlbrs = btracks | |
else: | |
atlbrs = [track.xywha if track.angle is not None else track.xyxy for track in atracks] | |
btlbrs = [track.xywha if track.angle is not None else track.xyxy for track in btracks] | |
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32) | |
if len(atlbrs) and len(btlbrs): | |
if len(atlbrs[0]) == 5 and len(btlbrs[0]) == 5: | |
ious = batch_probiou( | |
np.ascontiguousarray(atlbrs, dtype=np.float32), | |
np.ascontiguousarray(btlbrs, dtype=np.float32), | |
).numpy() | |
else: | |
ious = bbox_ioa( | |
np.ascontiguousarray(atlbrs, dtype=np.float32), | |
np.ascontiguousarray(btlbrs, dtype=np.float32), | |
iou=True, | |
) | |
return 1 - ious # cost matrix | |
def embedding_distance(tracks: list, detections: list, metric: str = "cosine") -> np.ndarray: | |
""" | |
Compute distance between tracks and detections based on embeddings. | |
Args: | |
tracks (list[STrack]): List of tracks. | |
detections (list[BaseTrack]): List of detections. | |
metric (str, optional): Metric for distance computation. Defaults to 'cosine'. | |
Returns: | |
(np.ndarray): Cost matrix computed based on embeddings. | |
""" | |
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32) | |
if cost_matrix.size == 0: | |
return cost_matrix | |
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32) | |
# for i, track in enumerate(tracks): | |
# cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric)) | |
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32) | |
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features | |
return cost_matrix | |
def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray: | |
""" | |
Fuses cost matrix with detection scores to produce a single similarity matrix. | |
Args: | |
cost_matrix (np.ndarray): The matrix containing cost values for assignments. | |
detections (list[BaseTrack]): List of detections with scores. | |
Returns: | |
(np.ndarray): Fused similarity matrix. | |
""" | |
if cost_matrix.size == 0: | |
return cost_matrix | |
iou_sim = 1 - cost_matrix | |
det_scores = np.array([det.score for det in detections]) | |
det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0) | |
fuse_sim = iou_sim * det_scores | |
return 1 - fuse_sim # fuse_cost | |