Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import torch | |
import torch.nn as nn | |
from .checks import check_version | |
from .metrics import bbox_iou, probiou | |
from .ops import xywhr2xyxyxyxy | |
TORCH_1_10 = check_version(torch.__version__, "1.10.0") | |
class TaskAlignedAssigner(nn.Module): | |
""" | |
A task-aligned assigner for object detection. | |
This class assigns ground-truth (gt) objects to anchors based on the task-aligned metric, which combines both | |
classification and localization information. | |
Attributes: | |
topk (int): The number of top candidates to consider. | |
num_classes (int): The number of object classes. | |
alpha (float): The alpha parameter for the classification component of the task-aligned metric. | |
beta (float): The beta parameter for the localization component of the task-aligned metric. | |
eps (float): A small value to prevent division by zero. | |
""" | |
def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9): | |
"""Initialize a TaskAlignedAssigner object with customizable hyperparameters.""" | |
super().__init__() | |
self.topk = topk | |
self.num_classes = num_classes | |
self.bg_idx = num_classes | |
self.alpha = alpha | |
self.beta = beta | |
self.eps = eps | |
def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt): | |
""" | |
Compute the task-aligned assignment. Reference code is available at | |
https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py. | |
Args: | |
pd_scores (Tensor): shape(bs, num_total_anchors, num_classes) | |
pd_bboxes (Tensor): shape(bs, num_total_anchors, 4) | |
anc_points (Tensor): shape(num_total_anchors, 2) | |
gt_labels (Tensor): shape(bs, n_max_boxes, 1) | |
gt_bboxes (Tensor): shape(bs, n_max_boxes, 4) | |
mask_gt (Tensor): shape(bs, n_max_boxes, 1) | |
Returns: | |
target_labels (Tensor): shape(bs, num_total_anchors) | |
target_bboxes (Tensor): shape(bs, num_total_anchors, 4) | |
target_scores (Tensor): shape(bs, num_total_anchors, num_classes) | |
fg_mask (Tensor): shape(bs, num_total_anchors) | |
target_gt_idx (Tensor): shape(bs, num_total_anchors) | |
""" | |
self.bs = pd_scores.shape[0] | |
self.n_max_boxes = gt_bboxes.shape[1] | |
if self.n_max_boxes == 0: | |
device = gt_bboxes.device | |
return ( | |
torch.full_like(pd_scores[..., 0], self.bg_idx).to(device), | |
torch.zeros_like(pd_bboxes).to(device), | |
torch.zeros_like(pd_scores).to(device), | |
torch.zeros_like(pd_scores[..., 0]).to(device), | |
torch.zeros_like(pd_scores[..., 0]).to(device), | |
) | |
mask_pos, align_metric, overlaps = self.get_pos_mask( | |
pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt | |
) | |
target_gt_idx, fg_mask, mask_pos = self.select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes) | |
# Assigned target | |
target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask) | |
# Normalize | |
align_metric *= mask_pos | |
pos_align_metrics = align_metric.amax(dim=-1, keepdim=True) # b, max_num_obj | |
pos_overlaps = (overlaps * mask_pos).amax(dim=-1, keepdim=True) # b, max_num_obj | |
norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1) | |
target_scores = target_scores * norm_align_metric | |
return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx | |
def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt): | |
"""Get in_gts mask, (b, max_num_obj, h*w).""" | |
mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes) | |
# Get anchor_align metric, (b, max_num_obj, h*w) | |
align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt) | |
# Get topk_metric mask, (b, max_num_obj, h*w) | |
mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool()) | |
# Merge all mask to a final mask, (b, max_num_obj, h*w) | |
mask_pos = mask_topk * mask_in_gts * mask_gt | |
return mask_pos, align_metric, overlaps | |
def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_gt): | |
"""Compute alignment metric given predicted and ground truth bounding boxes.""" | |
na = pd_bboxes.shape[-2] | |
mask_gt = mask_gt.bool() # b, max_num_obj, h*w | |
overlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device) | |
bbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device) | |
ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj | |
ind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes) # b, max_num_obj | |
ind[1] = gt_labels.squeeze(-1) # b, max_num_obj | |
# Get the scores of each grid for each gt cls | |
bbox_scores[mask_gt] = pd_scores[ind[0], :, ind[1]][mask_gt] # b, max_num_obj, h*w | |
# (b, max_num_obj, 1, 4), (b, 1, h*w, 4) | |
pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_gt] | |
gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_gt] | |
overlaps[mask_gt] = self.iou_calculation(gt_boxes, pd_boxes) | |
align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta) | |
return align_metric, overlaps | |
def iou_calculation(self, gt_bboxes, pd_bboxes): | |
"""IoU calculation for horizontal bounding boxes.""" | |
return bbox_iou(gt_bboxes, pd_bboxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0) | |
def select_topk_candidates(self, metrics, largest=True, topk_mask=None): | |
""" | |
Select the top-k candidates based on the given metrics. | |
Args: | |
metrics (Tensor): A tensor of shape (b, max_num_obj, h*w), where b is the batch size, | |
max_num_obj is the maximum number of objects, and h*w represents the | |
total number of anchor points. | |
largest (bool): If True, select the largest values; otherwise, select the smallest values. | |
topk_mask (Tensor): An optional boolean tensor of shape (b, max_num_obj, topk), where | |
topk is the number of top candidates to consider. If not provided, | |
the top-k values are automatically computed based on the given metrics. | |
Returns: | |
(Tensor): A tensor of shape (b, max_num_obj, h*w) containing the selected top-k candidates. | |
""" | |
# (b, max_num_obj, topk) | |
topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest) | |
if topk_mask is None: | |
topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs) | |
# (b, max_num_obj, topk) | |
topk_idxs.masked_fill_(~topk_mask, 0) | |
# (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w) | |
count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device) | |
ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device) | |
for k in range(self.topk): | |
# Expand topk_idxs for each value of k and add 1 at the specified positions | |
count_tensor.scatter_add_(-1, topk_idxs[:, :, k : k + 1], ones) | |
# count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtype=torch.int8, device=topk_idxs.device)) | |
# Filter invalid bboxes | |
count_tensor.masked_fill_(count_tensor > 1, 0) | |
return count_tensor.to(metrics.dtype) | |
def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask): | |
""" | |
Compute target labels, target bounding boxes, and target scores for the positive anchor points. | |
Args: | |
gt_labels (Tensor): Ground truth labels of shape (b, max_num_obj, 1), where b is the | |
batch size and max_num_obj is the maximum number of objects. | |
gt_bboxes (Tensor): Ground truth bounding boxes of shape (b, max_num_obj, 4). | |
target_gt_idx (Tensor): Indices of the assigned ground truth objects for positive | |
anchor points, with shape (b, h*w), where h*w is the total | |
number of anchor points. | |
fg_mask (Tensor): A boolean tensor of shape (b, h*w) indicating the positive | |
(foreground) anchor points. | |
Returns: | |
(Tuple[Tensor, Tensor, Tensor]): A tuple containing the following tensors: | |
- target_labels (Tensor): Shape (b, h*w), containing the target labels for | |
positive anchor points. | |
- target_bboxes (Tensor): Shape (b, h*w, 4), containing the target bounding boxes | |
for positive anchor points. | |
- target_scores (Tensor): Shape (b, h*w, num_classes), containing the target scores | |
for positive anchor points, where num_classes is the number | |
of object classes. | |
""" | |
# Assigned target labels, (b, 1) | |
batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None] | |
target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w) | |
target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w) | |
# Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4) | |
target_bboxes = gt_bboxes.view(-1, gt_bboxes.shape[-1])[target_gt_idx] | |
# Assigned target scores | |
target_labels.clamp_(0) | |
# 10x faster than F.one_hot() | |
target_scores = torch.zeros( | |
(target_labels.shape[0], target_labels.shape[1], self.num_classes), | |
dtype=torch.int64, | |
device=target_labels.device, | |
) # (b, h*w, 80) | |
target_scores.scatter_(2, target_labels.unsqueeze(-1), 1) | |
fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80) | |
target_scores = torch.where(fg_scores_mask > 0, target_scores, 0) | |
return target_labels, target_bboxes, target_scores | |
def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9): | |
""" | |
Select the positive anchor center in gt. | |
Args: | |
xy_centers (Tensor): shape(h*w, 2) | |
gt_bboxes (Tensor): shape(b, n_boxes, 4) | |
Returns: | |
(Tensor): shape(b, n_boxes, h*w) | |
""" | |
n_anchors = xy_centers.shape[0] | |
bs, n_boxes, _ = gt_bboxes.shape | |
lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2) # left-top, right-bottom | |
bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1) | |
# return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype) | |
return bbox_deltas.amin(3).gt_(eps) | |
def select_highest_overlaps(mask_pos, overlaps, n_max_boxes): | |
""" | |
If an anchor box is assigned to multiple gts, the one with the highest IoU will be selected. | |
Args: | |
mask_pos (Tensor): shape(b, n_max_boxes, h*w) | |
overlaps (Tensor): shape(b, n_max_boxes, h*w) | |
Returns: | |
target_gt_idx (Tensor): shape(b, h*w) | |
fg_mask (Tensor): shape(b, h*w) | |
mask_pos (Tensor): shape(b, n_max_boxes, h*w) | |
""" | |
# (b, n_max_boxes, h*w) -> (b, h*w) | |
fg_mask = mask_pos.sum(-2) | |
if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes | |
mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1) # (b, n_max_boxes, h*w) | |
max_overlaps_idx = overlaps.argmax(1) # (b, h*w) | |
is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device) | |
is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1) | |
mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() # (b, n_max_boxes, h*w) | |
fg_mask = mask_pos.sum(-2) | |
# Find each grid serve which gt(index) | |
target_gt_idx = mask_pos.argmax(-2) # (b, h*w) | |
return target_gt_idx, fg_mask, mask_pos | |
class RotatedTaskAlignedAssigner(TaskAlignedAssigner): | |
def iou_calculation(self, gt_bboxes, pd_bboxes): | |
"""IoU calculation for rotated bounding boxes.""" | |
return probiou(gt_bboxes, pd_bboxes).squeeze(-1).clamp_(0) | |
def select_candidates_in_gts(xy_centers, gt_bboxes): | |
""" | |
Select the positive anchor center in gt for rotated bounding boxes. | |
Args: | |
xy_centers (Tensor): shape(h*w, 2) | |
gt_bboxes (Tensor): shape(b, n_boxes, 5) | |
Returns: | |
(Tensor): shape(b, n_boxes, h*w) | |
""" | |
# (b, n_boxes, 5) --> (b, n_boxes, 4, 2) | |
corners = xywhr2xyxyxyxy(gt_bboxes) | |
# (b, n_boxes, 1, 2) | |
a, b, _, d = corners.split(1, dim=-2) | |
ab = b - a | |
ad = d - a | |
# (b, n_boxes, h*w, 2) | |
ap = xy_centers - a | |
norm_ab = (ab * ab).sum(dim=-1) | |
norm_ad = (ad * ad).sum(dim=-1) | |
ap_dot_ab = (ap * ab).sum(dim=-1) | |
ap_dot_ad = (ap * ad).sum(dim=-1) | |
return (ap_dot_ab >= 0) & (ap_dot_ab <= norm_ab) & (ap_dot_ad >= 0) & (ap_dot_ad <= norm_ad) # is_in_box | |
def make_anchors(feats, strides, grid_cell_offset=0.5): | |
"""Generate anchors from features.""" | |
anchor_points, stride_tensor = [], [] | |
assert feats is not None | |
dtype, device = feats[0].dtype, feats[0].device | |
for i, stride in enumerate(strides): | |
_, _, h, w = feats[i].shape | |
sx = torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset # shift x | |
sy = torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset # shift y | |
sy, sx = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_10 else torch.meshgrid(sy, sx) | |
anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2)) | |
stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device)) | |
return torch.cat(anchor_points), torch.cat(stride_tensor) | |
def dist2bbox(distance, anchor_points, xywh=True, dim=-1): | |
"""Transform distance(ltrb) to box(xywh or xyxy).""" | |
assert(distance.shape[dim] == 4) | |
lt, rb = distance.split([2, 2], dim) | |
x1y1 = anchor_points - lt | |
x2y2 = anchor_points + rb | |
if xywh: | |
c_xy = (x1y1 + x2y2) / 2 | |
wh = x2y2 - x1y1 | |
return torch.cat((c_xy, wh), dim) # xywh bbox | |
return torch.cat((x1y1, x2y2), dim) # xyxy bbox | |
def bbox2dist(anchor_points, bbox, reg_max): | |
"""Transform bbox(xyxy) to dist(ltrb).""" | |
x1y1, x2y2 = bbox.chunk(2, -1) | |
return torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1).clamp_(0, reg_max - 0.01) # dist (lt, rb) | |
def dist2rbox(pred_dist, pred_angle, anchor_points, dim=-1): | |
""" | |
Decode predicted object bounding box coordinates from anchor points and distribution. | |
Args: | |
pred_dist (torch.Tensor): Predicted rotated distance, (bs, h*w, 4). | |
pred_angle (torch.Tensor): Predicted angle, (bs, h*w, 1). | |
anchor_points (torch.Tensor): Anchor points, (h*w, 2). | |
Returns: | |
(torch.Tensor): Predicted rotated bounding boxes, (bs, h*w, 4). | |
""" | |
lt, rb = pred_dist.split(2, dim=dim) | |
cos, sin = torch.cos(pred_angle), torch.sin(pred_angle) | |
# (bs, h*w, 1) | |
xf, yf = ((rb - lt) / 2).split(1, dim=dim) | |
x, y = xf * cos - yf * sin, xf * sin + yf * cos | |
xy = torch.cat([x, y], dim=dim) + anchor_points | |
return torch.cat([xy, lt + rb], dim=dim) | |