Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from copy import copy | |
import torch | |
from ultralytics.models.yolo.detect import DetectionTrainer | |
from ultralytics.nn.tasks import RTDETRDetectionModel | |
from ultralytics.utils import RANK, colorstr | |
from .val import RTDETRDataset, RTDETRValidator | |
class RTDETRTrainer(DetectionTrainer): | |
""" | |
Trainer class for the RT-DETR model developed by Baidu for real-time object detection. Extends the DetectionTrainer | |
class for YOLO to adapt to the specific features and architecture of RT-DETR. This model leverages Vision | |
Transformers and has capabilities like IoU-aware query selection and adaptable inference speed. | |
Notes: | |
- F.grid_sample used in RT-DETR does not support the `deterministic=True` argument. | |
- AMP training can lead to NaN outputs and may produce errors during bipartite graph matching. | |
Example: | |
```python | |
from ultralytics.models.rtdetr.train import RTDETRTrainer | |
args = dict(model='rtdetr-l.yaml', data='coco8.yaml', imgsz=640, epochs=3) | |
trainer = RTDETRTrainer(overrides=args) | |
trainer.train() | |
``` | |
""" | |
def get_model(self, cfg=None, weights=None, verbose=True): | |
""" | |
Initialize and return an RT-DETR model for object detection tasks. | |
Args: | |
cfg (dict, optional): Model configuration. Defaults to None. | |
weights (str, optional): Path to pre-trained model weights. Defaults to None. | |
verbose (bool): Verbose logging if True. Defaults to True. | |
Returns: | |
(RTDETRDetectionModel): Initialized model. | |
""" | |
model = RTDETRDetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1) | |
if weights: | |
model.load(weights) | |
return model | |
def build_dataset(self, img_path, mode="val", batch=None): | |
""" | |
Build and return an RT-DETR dataset for training or validation. | |
Args: | |
img_path (str): Path to the folder containing images. | |
mode (str): Dataset mode, either 'train' or 'val'. | |
batch (int, optional): Batch size for rectangle training. Defaults to None. | |
Returns: | |
(RTDETRDataset): Dataset object for the specific mode. | |
""" | |
return RTDETRDataset( | |
img_path=img_path, | |
imgsz=self.args.imgsz, | |
batch_size=batch, | |
augment=mode == "train", | |
hyp=self.args, | |
rect=False, | |
cache=self.args.cache or None, | |
prefix=colorstr(f"{mode}: "), | |
data=self.data, | |
) | |
def get_validator(self): | |
""" | |
Returns a DetectionValidator suitable for RT-DETR model validation. | |
Returns: | |
(RTDETRValidator): Validator object for model validation. | |
""" | |
self.loss_names = "giou_loss", "cls_loss", "l1_loss" | |
return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) | |
def preprocess_batch(self, batch): | |
""" | |
Preprocess a batch of images. Scales and converts the images to float format. | |
Args: | |
batch (dict): Dictionary containing a batch of images, bboxes, and labels. | |
Returns: | |
(dict): Preprocessed batch. | |
""" | |
batch = super().preprocess_batch(batch) | |
bs = len(batch["img"]) | |
batch_idx = batch["batch_idx"] | |
gt_bbox, gt_class = [], [] | |
for i in range(bs): | |
gt_bbox.append(batch["bboxes"][batch_idx == i].to(batch_idx.device)) | |
gt_class.append(batch["cls"][batch_idx == i].to(device=batch_idx.device, dtype=torch.long)) | |
return batch | |