Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import os | |
from pathlib import Path | |
import cv2 | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
from PIL import Image | |
from ultralytics.utils import TQDM | |
class FastSAMPrompt: | |
""" | |
Fast Segment Anything Model class for image annotation and visualization. | |
Attributes: | |
device (str): Computing device ('cuda' or 'cpu'). | |
results: Object detection or segmentation results. | |
source: Source image or image path. | |
clip: CLIP model for linear assignment. | |
""" | |
def __init__(self, source, results, device="cuda") -> None: | |
"""Initializes FastSAMPrompt with given source, results and device, and assigns clip for linear assignment.""" | |
self.device = device | |
self.results = results | |
self.source = source | |
# Import and assign clip | |
try: | |
import clip | |
except ImportError: | |
from ultralytics.utils.checks import check_requirements | |
check_requirements("git+https://github.com/openai/CLIP.git") | |
import clip | |
self.clip = clip | |
def _segment_image(image, bbox): | |
"""Segments the given image according to the provided bounding box coordinates.""" | |
image_array = np.array(image) | |
segmented_image_array = np.zeros_like(image_array) | |
x1, y1, x2, y2 = bbox | |
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2] | |
segmented_image = Image.fromarray(segmented_image_array) | |
black_image = Image.new("RGB", image.size, (255, 255, 255)) | |
# transparency_mask = np.zeros_like((), dtype=np.uint8) | |
transparency_mask = np.zeros((image_array.shape[0], image_array.shape[1]), dtype=np.uint8) | |
transparency_mask[y1:y2, x1:x2] = 255 | |
transparency_mask_image = Image.fromarray(transparency_mask, mode="L") | |
black_image.paste(segmented_image, mask=transparency_mask_image) | |
return black_image | |
def _format_results(result, filter=0): | |
"""Formats detection results into list of annotations each containing ID, segmentation, bounding box, score and | |
area. | |
""" | |
annotations = [] | |
n = len(result.masks.data) if result.masks is not None else 0 | |
for i in range(n): | |
mask = result.masks.data[i] == 1.0 | |
if torch.sum(mask) >= filter: | |
annotation = { | |
"id": i, | |
"segmentation": mask.cpu().numpy(), | |
"bbox": result.boxes.data[i], | |
"score": result.boxes.conf[i], | |
} | |
annotation["area"] = annotation["segmentation"].sum() | |
annotations.append(annotation) | |
return annotations | |
def _get_bbox_from_mask(mask): | |
"""Applies morphological transformations to the mask, displays it, and if with_contours is True, draws | |
contours. | |
""" | |
mask = mask.astype(np.uint8) | |
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
x1, y1, w, h = cv2.boundingRect(contours[0]) | |
x2, y2 = x1 + w, y1 + h | |
if len(contours) > 1: | |
for b in contours: | |
x_t, y_t, w_t, h_t = cv2.boundingRect(b) | |
x1 = min(x1, x_t) | |
y1 = min(y1, y_t) | |
x2 = max(x2, x_t + w_t) | |
y2 = max(y2, y_t + h_t) | |
return [x1, y1, x2, y2] | |
def plot( | |
self, | |
annotations, | |
output, | |
bbox=None, | |
points=None, | |
point_label=None, | |
mask_random_color=True, | |
better_quality=True, | |
retina=False, | |
with_contours=True, | |
): | |
""" | |
Plots annotations, bounding boxes, and points on images and saves the output. | |
Args: | |
annotations (list): Annotations to be plotted. | |
output (str or Path): Output directory for saving the plots. | |
bbox (list, optional): Bounding box coordinates [x1, y1, x2, y2]. Defaults to None. | |
points (list, optional): Points to be plotted. Defaults to None. | |
point_label (list, optional): Labels for the points. Defaults to None. | |
mask_random_color (bool, optional): Whether to use random color for masks. Defaults to True. | |
better_quality (bool, optional): Whether to apply morphological transformations for better mask quality. Defaults to True. | |
retina (bool, optional): Whether to use retina mask. Defaults to False. | |
with_contours (bool, optional): Whether to plot contours. Defaults to True. | |
""" | |
pbar = TQDM(annotations, total=len(annotations)) | |
for ann in pbar: | |
result_name = os.path.basename(ann.path) | |
image = ann.orig_img[..., ::-1] # BGR to RGB | |
original_h, original_w = ann.orig_shape | |
# For macOS only | |
# plt.switch_backend('TkAgg') | |
plt.figure(figsize=(original_w / 100, original_h / 100)) | |
# Add subplot with no margin. | |
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) | |
plt.margins(0, 0) | |
plt.gca().xaxis.set_major_locator(plt.NullLocator()) | |
plt.gca().yaxis.set_major_locator(plt.NullLocator()) | |
plt.imshow(image) | |
if ann.masks is not None: | |
masks = ann.masks.data | |
if better_quality: | |
if isinstance(masks[0], torch.Tensor): | |
masks = np.array(masks.cpu()) | |
for i, mask in enumerate(masks): | |
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) | |
masks[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) | |
self.fast_show_mask( | |
masks, | |
plt.gca(), | |
random_color=mask_random_color, | |
bbox=bbox, | |
points=points, | |
pointlabel=point_label, | |
retinamask=retina, | |
target_height=original_h, | |
target_width=original_w, | |
) | |
if with_contours: | |
contour_all = [] | |
temp = np.zeros((original_h, original_w, 1)) | |
for i, mask in enumerate(masks): | |
mask = mask.astype(np.uint8) | |
if not retina: | |
mask = cv2.resize(mask, (original_w, original_h), interpolation=cv2.INTER_NEAREST) | |
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
contour_all.extend(iter(contours)) | |
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2) | |
color = np.array([0 / 255, 0 / 255, 1.0, 0.8]) | |
contour_mask = temp / 255 * color.reshape(1, 1, -1) | |
plt.imshow(contour_mask) | |
# Save the figure | |
save_path = Path(output) / result_name | |
save_path.parent.mkdir(exist_ok=True, parents=True) | |
plt.axis("off") | |
plt.savefig(save_path, bbox_inches="tight", pad_inches=0, transparent=True) | |
plt.close() | |
pbar.set_description(f"Saving {result_name} to {save_path}") | |
def fast_show_mask( | |
annotation, | |
ax, | |
random_color=False, | |
bbox=None, | |
points=None, | |
pointlabel=None, | |
retinamask=True, | |
target_height=960, | |
target_width=960, | |
): | |
""" | |
Quickly shows the mask annotations on the given matplotlib axis. | |
Args: | |
annotation (array-like): Mask annotation. | |
ax (matplotlib.axes.Axes): Matplotlib axis. | |
random_color (bool, optional): Whether to use random color for masks. Defaults to False. | |
bbox (list, optional): Bounding box coordinates [x1, y1, x2, y2]. Defaults to None. | |
points (list, optional): Points to be plotted. Defaults to None. | |
pointlabel (list, optional): Labels for the points. Defaults to None. | |
retinamask (bool, optional): Whether to use retina mask. Defaults to True. | |
target_height (int, optional): Target height for resizing. Defaults to 960. | |
target_width (int, optional): Target width for resizing. Defaults to 960. | |
""" | |
n, h, w = annotation.shape # batch, height, width | |
areas = np.sum(annotation, axis=(1, 2)) | |
annotation = annotation[np.argsort(areas)] | |
index = (annotation != 0).argmax(axis=0) | |
if random_color: | |
color = np.random.random((n, 1, 1, 3)) | |
else: | |
color = np.ones((n, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 1.0]) | |
transparency = np.ones((n, 1, 1, 1)) * 0.6 | |
visual = np.concatenate([color, transparency], axis=-1) | |
mask_image = np.expand_dims(annotation, -1) * visual | |
show = np.zeros((h, w, 4)) | |
h_indices, w_indices = np.meshgrid(np.arange(h), np.arange(w), indexing="ij") | |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) | |
show[h_indices, w_indices, :] = mask_image[indices] | |
if bbox is not None: | |
x1, y1, x2, y2 = bbox | |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1)) | |
# Draw point | |
if points is not None: | |
plt.scatter( | |
[point[0] for i, point in enumerate(points) if pointlabel[i] == 1], | |
[point[1] for i, point in enumerate(points) if pointlabel[i] == 1], | |
s=20, | |
c="y", | |
) | |
plt.scatter( | |
[point[0] for i, point in enumerate(points) if pointlabel[i] == 0], | |
[point[1] for i, point in enumerate(points) if pointlabel[i] == 0], | |
s=20, | |
c="m", | |
) | |
if not retinamask: | |
show = cv2.resize(show, (target_width, target_height), interpolation=cv2.INTER_NEAREST) | |
ax.imshow(show) | |
def retrieve(self, model, preprocess, elements, search_text: str, device) -> int: | |
"""Processes images and text with a model, calculates similarity, and returns softmax score.""" | |
preprocessed_images = [preprocess(image).to(device) for image in elements] | |
tokenized_text = self.clip.tokenize([search_text]).to(device) | |
stacked_images = torch.stack(preprocessed_images) | |
image_features = model.encode_image(stacked_images) | |
text_features = model.encode_text(tokenized_text) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
probs = 100.0 * image_features @ text_features.T | |
return probs[:, 0].softmax(dim=0) | |
def _crop_image(self, format_results): | |
"""Crops an image based on provided annotation format and returns cropped images and related data.""" | |
if os.path.isdir(self.source): | |
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.") | |
image = Image.fromarray(cv2.cvtColor(self.results[0].orig_img, cv2.COLOR_BGR2RGB)) | |
ori_w, ori_h = image.size | |
annotations = format_results | |
mask_h, mask_w = annotations[0]["segmentation"].shape | |
if ori_w != mask_w or ori_h != mask_h: | |
image = image.resize((mask_w, mask_h)) | |
cropped_boxes = [] | |
cropped_images = [] | |
not_crop = [] | |
filter_id = [] | |
for _, mask in enumerate(annotations): | |
if np.sum(mask["segmentation"]) <= 100: | |
filter_id.append(_) | |
continue | |
bbox = self._get_bbox_from_mask(mask["segmentation"]) # bbox from mask | |
cropped_boxes.append(self._segment_image(image, bbox)) # save cropped image | |
cropped_images.append(bbox) # save cropped image bbox | |
return cropped_boxes, cropped_images, not_crop, filter_id, annotations | |
def box_prompt(self, bbox): | |
"""Modifies the bounding box properties and calculates IoU between masks and bounding box.""" | |
if self.results[0].masks is not None: | |
assert bbox[2] != 0 and bbox[3] != 0 | |
if os.path.isdir(self.source): | |
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.") | |
masks = self.results[0].masks.data | |
target_height, target_width = self.results[0].orig_shape | |
h = masks.shape[1] | |
w = masks.shape[2] | |
if h != target_height or w != target_width: | |
bbox = [ | |
int(bbox[0] * w / target_width), | |
int(bbox[1] * h / target_height), | |
int(bbox[2] * w / target_width), | |
int(bbox[3] * h / target_height), | |
] | |
bbox[0] = max(round(bbox[0]), 0) | |
bbox[1] = max(round(bbox[1]), 0) | |
bbox[2] = min(round(bbox[2]), w) | |
bbox[3] = min(round(bbox[3]), h) | |
# IoUs = torch.zeros(len(masks), dtype=torch.float32) | |
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0]) | |
masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2)) | |
orig_masks_area = torch.sum(masks, dim=(1, 2)) | |
union = bbox_area + orig_masks_area - masks_area | |
iou = masks_area / union | |
max_iou_index = torch.argmax(iou) | |
self.results[0].masks.data = torch.tensor(np.array([masks[max_iou_index].cpu().numpy()])) | |
return self.results | |
def point_prompt(self, points, pointlabel): # numpy | |
"""Adjusts points on detected masks based on user input and returns the modified results.""" | |
if self.results[0].masks is not None: | |
if os.path.isdir(self.source): | |
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.") | |
masks = self._format_results(self.results[0], 0) | |
target_height, target_width = self.results[0].orig_shape | |
h = masks[0]["segmentation"].shape[0] | |
w = masks[0]["segmentation"].shape[1] | |
if h != target_height or w != target_width: | |
points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points] | |
onemask = np.zeros((h, w)) | |
for annotation in masks: | |
mask = annotation["segmentation"] if isinstance(annotation, dict) else annotation | |
for i, point in enumerate(points): | |
if mask[point[1], point[0]] == 1 and pointlabel[i] == 1: | |
onemask += mask | |
if mask[point[1], point[0]] == 1 and pointlabel[i] == 0: | |
onemask -= mask | |
onemask = onemask >= 1 | |
self.results[0].masks.data = torch.tensor(np.array([onemask])) | |
return self.results | |
def text_prompt(self, text): | |
"""Processes a text prompt, applies it to existing results and returns the updated results.""" | |
if self.results[0].masks is not None: | |
format_results = self._format_results(self.results[0], 0) | |
cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results) | |
clip_model, preprocess = self.clip.load("ViT-B/32", device=self.device) | |
scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device) | |
max_idx = scores.argsort() | |
max_idx = max_idx[-1] | |
max_idx += sum(np.array(filter_id) <= int(max_idx)) | |
self.results[0].masks.data = torch.tensor(np.array([annotations[max_idx]["segmentation"]])) | |
return self.results | |
def everything_prompt(self): | |
"""Returns the processed results from the previous methods in the class.""" | |
return self.results | |