Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import math | |
import random | |
from copy import deepcopy | |
import cv2 | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from ultralytics.utils import LOGGER, colorstr | |
from ultralytics.utils.checks import check_version | |
from ultralytics.utils.instance import Instances | |
from ultralytics.utils.metrics import bbox_ioa | |
from ultralytics.utils.ops import segment2box, xyxyxyxy2xywhr | |
from ultralytics.utils.torch_utils import TORCHVISION_0_10, TORCHVISION_0_11, TORCHVISION_0_13 | |
from .utils import polygons2masks, polygons2masks_overlap | |
DEFAULT_MEAN = (0.0, 0.0, 0.0) | |
DEFAULT_STD = (1.0, 1.0, 1.0) | |
DEFAULT_CROP_FTACTION = 1.0 | |
# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic | |
class BaseTransform: | |
""" | |
Base class for image transformations. | |
This is a generic transformation class that can be extended for specific image processing needs. | |
The class is designed to be compatible with both classification and semantic segmentation tasks. | |
Methods: | |
__init__: Initializes the BaseTransform object. | |
apply_image: Applies image transformation to labels. | |
apply_instances: Applies transformations to object instances in labels. | |
apply_semantic: Applies semantic segmentation to an image. | |
__call__: Applies all label transformations to an image, instances, and semantic masks. | |
""" | |
def __init__(self) -> None: | |
"""Initializes the BaseTransform object.""" | |
pass | |
def apply_image(self, labels): | |
"""Applies image transformations to labels.""" | |
pass | |
def apply_instances(self, labels): | |
"""Applies transformations to object instances in labels.""" | |
pass | |
def apply_semantic(self, labels): | |
"""Applies semantic segmentation to an image.""" | |
pass | |
def __call__(self, labels): | |
"""Applies all label transformations to an image, instances, and semantic masks.""" | |
self.apply_image(labels) | |
self.apply_instances(labels) | |
self.apply_semantic(labels) | |
class Compose: | |
"""Class for composing multiple image transformations.""" | |
def __init__(self, transforms): | |
"""Initializes the Compose object with a list of transforms.""" | |
self.transforms = transforms | |
def __call__(self, data): | |
"""Applies a series of transformations to input data.""" | |
for t in self.transforms: | |
data = t(data) | |
return data | |
def append(self, transform): | |
"""Appends a new transform to the existing list of transforms.""" | |
self.transforms.append(transform) | |
def tolist(self): | |
"""Converts the list of transforms to a standard Python list.""" | |
return self.transforms | |
def __repr__(self): | |
"""Returns a string representation of the object.""" | |
return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})" | |
class BaseMixTransform: | |
""" | |
Class for base mix (MixUp/Mosaic) transformations. | |
This implementation is from mmyolo. | |
""" | |
def __init__(self, dataset, pre_transform=None, p=0.0) -> None: | |
"""Initializes the BaseMixTransform object with dataset, pre_transform, and probability.""" | |
self.dataset = dataset | |
self.pre_transform = pre_transform | |
self.p = p | |
def __call__(self, labels): | |
"""Applies pre-processing transforms and mixup/mosaic transforms to labels data.""" | |
if random.uniform(0, 1) > self.p: | |
return labels | |
# Get index of one or three other images | |
indexes = self.get_indexes() | |
if isinstance(indexes, int): | |
indexes = [indexes] | |
# Get images information will be used for Mosaic or MixUp | |
mix_labels = [self.dataset.get_image_and_label(i) for i in indexes] | |
if self.pre_transform is not None: | |
for i, data in enumerate(mix_labels): | |
mix_labels[i] = self.pre_transform(data) | |
labels["mix_labels"] = mix_labels | |
# Mosaic or MixUp | |
labels = self._mix_transform(labels) | |
labels.pop("mix_labels", None) | |
return labels | |
def _mix_transform(self, labels): | |
"""Applies MixUp or Mosaic augmentation to the label dictionary.""" | |
raise NotImplementedError | |
def get_indexes(self): | |
"""Gets a list of shuffled indexes for mosaic augmentation.""" | |
raise NotImplementedError | |
class Mosaic(BaseMixTransform): | |
""" | |
Mosaic augmentation. | |
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. | |
The augmentation is applied to a dataset with a given probability. | |
Attributes: | |
dataset: The dataset on which the mosaic augmentation is applied. | |
imgsz (int, optional): Image size (height and width) after mosaic pipeline of a single image. Default to 640. | |
p (float, optional): Probability of applying the mosaic augmentation. Must be in the range 0-1. Default to 1.0. | |
n (int, optional): The grid size, either 4 (for 2x2) or 9 (for 3x3). | |
""" | |
def __init__(self, dataset, imgsz=640, p=1.0, n=4): | |
"""Initializes the object with a dataset, image size, probability, and border.""" | |
assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}." | |
assert n in (4, 9), "grid must be equal to 4 or 9." | |
super().__init__(dataset=dataset, p=p) | |
self.dataset = dataset | |
self.imgsz = imgsz | |
self.border = (-imgsz // 2, -imgsz // 2) # width, height | |
self.n = n | |
def get_indexes(self, buffer=True): | |
"""Return a list of random indexes from the dataset.""" | |
if buffer: # select images from buffer | |
return random.choices(list(self.dataset.buffer), k=self.n - 1) | |
else: # select any images | |
return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)] | |
def _mix_transform(self, labels): | |
"""Apply mixup transformation to the input image and labels.""" | |
assert labels.get("rect_shape", None) is None, "rect and mosaic are mutually exclusive." | |
assert len(labels.get("mix_labels", [])), "There are no other images for mosaic augment." | |
return ( | |
self._mosaic3(labels) if self.n == 3 else self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels) | |
) # This code is modified for mosaic3 method. | |
def _mosaic3(self, labels): | |
"""Create a 1x3 image mosaic.""" | |
mosaic_labels = [] | |
s = self.imgsz | |
for i in range(3): | |
labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] | |
# Load image | |
img = labels_patch["img"] | |
h, w = labels_patch.pop("resized_shape") | |
# Place img in img3 | |
if i == 0: # center | |
img3 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 3 tiles | |
h0, w0 = h, w | |
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates | |
elif i == 1: # right | |
c = s + w0, s, s + w0 + w, s + h | |
elif i == 2: # left | |
c = s - w, s + h0 - h, s, s + h0 | |
padw, padh = c[:2] | |
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords | |
img3[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] # img3[ymin:ymax, xmin:xmax] | |
# hp, wp = h, w # height, width previous for next iteration | |
# Labels assuming imgsz*2 mosaic size | |
labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) | |
mosaic_labels.append(labels_patch) | |
final_labels = self._cat_labels(mosaic_labels) | |
final_labels["img"] = img3[-self.border[0] : self.border[0], -self.border[1] : self.border[1]] | |
return final_labels | |
def _mosaic4(self, labels): | |
"""Create a 2x2 image mosaic.""" | |
mosaic_labels = [] | |
s = self.imgsz | |
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y | |
for i in range(4): | |
labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] | |
# Load image | |
img = labels_patch["img"] | |
h, w = labels_patch.pop("resized_shape") | |
# Place img in img4 | |
if i == 0: # top left | |
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles | |
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) | |
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) | |
elif i == 1: # top right | |
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc | |
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h | |
elif i == 2: # bottom left | |
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) | |
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) | |
elif i == 3: # bottom right | |
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) | |
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) | |
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] | |
padw = x1a - x1b | |
padh = y1a - y1b | |
labels_patch = self._update_labels(labels_patch, padw, padh) | |
mosaic_labels.append(labels_patch) | |
final_labels = self._cat_labels(mosaic_labels) | |
final_labels["img"] = img4 | |
return final_labels | |
def _mosaic9(self, labels): | |
"""Create a 3x3 image mosaic.""" | |
mosaic_labels = [] | |
s = self.imgsz | |
hp, wp = -1, -1 # height, width previous | |
for i in range(9): | |
labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] | |
# Load image | |
img = labels_patch["img"] | |
h, w = labels_patch.pop("resized_shape") | |
# Place img in img9 | |
if i == 0: # center | |
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles | |
h0, w0 = h, w | |
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates | |
elif i == 1: # top | |
c = s, s - h, s + w, s | |
elif i == 2: # top right | |
c = s + wp, s - h, s + wp + w, s | |
elif i == 3: # right | |
c = s + w0, s, s + w0 + w, s + h | |
elif i == 4: # bottom right | |
c = s + w0, s + hp, s + w0 + w, s + hp + h | |
elif i == 5: # bottom | |
c = s + w0 - w, s + h0, s + w0, s + h0 + h | |
elif i == 6: # bottom left | |
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h | |
elif i == 7: # left | |
c = s - w, s + h0 - h, s, s + h0 | |
elif i == 8: # top left | |
c = s - w, s + h0 - hp - h, s, s + h0 - hp | |
padw, padh = c[:2] | |
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords | |
# Image | |
img9[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] # img9[ymin:ymax, xmin:xmax] | |
hp, wp = h, w # height, width previous for next iteration | |
# Labels assuming imgsz*2 mosaic size | |
labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) | |
mosaic_labels.append(labels_patch) | |
final_labels = self._cat_labels(mosaic_labels) | |
final_labels["img"] = img9[-self.border[0] : self.border[0], -self.border[1] : self.border[1]] | |
return final_labels | |
def _update_labels(labels, padw, padh): | |
"""Update labels.""" | |
nh, nw = labels["img"].shape[:2] | |
labels["instances"].convert_bbox(format="xyxy") | |
labels["instances"].denormalize(nw, nh) | |
labels["instances"].add_padding(padw, padh) | |
return labels | |
def _cat_labels(self, mosaic_labels): | |
"""Return labels with mosaic border instances clipped.""" | |
if len(mosaic_labels) == 0: | |
return {} | |
cls = [] | |
instances = [] | |
imgsz = self.imgsz * 2 # mosaic imgsz | |
for labels in mosaic_labels: | |
cls.append(labels["cls"]) | |
instances.append(labels["instances"]) | |
# Final labels | |
final_labels = { | |
"im_file": mosaic_labels[0]["im_file"], | |
"ori_shape": mosaic_labels[0]["ori_shape"], | |
"resized_shape": (imgsz, imgsz), | |
"cls": np.concatenate(cls, 0), | |
"instances": Instances.concatenate(instances, axis=0), | |
"mosaic_border": self.border, | |
} | |
final_labels["instances"].clip(imgsz, imgsz) | |
good = final_labels["instances"].remove_zero_area_boxes() | |
final_labels["cls"] = final_labels["cls"][good] | |
return final_labels | |
class MixUp(BaseMixTransform): | |
"""Class for applying MixUp augmentation to the dataset.""" | |
def __init__(self, dataset, pre_transform=None, p=0.0) -> None: | |
"""Initializes MixUp object with dataset, pre_transform, and probability of applying MixUp.""" | |
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) | |
def get_indexes(self): | |
"""Get a random index from the dataset.""" | |
return random.randint(0, len(self.dataset) - 1) | |
def _mix_transform(self, labels): | |
"""Applies MixUp augmentation as per https://arxiv.org/pdf/1710.09412.pdf.""" | |
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 | |
labels2 = labels["mix_labels"][0] | |
labels["img"] = (labels["img"] * r + labels2["img"] * (1 - r)).astype(np.uint8) | |
labels["instances"] = Instances.concatenate([labels["instances"], labels2["instances"]], axis=0) | |
labels["cls"] = np.concatenate([labels["cls"], labels2["cls"]], 0) | |
return labels | |
class RandomPerspective: | |
""" | |
Implements random perspective and affine transformations on images and corresponding bounding boxes, segments, and | |
keypoints. These transformations include rotation, translation, scaling, and shearing. The class also offers the | |
option to apply these transformations conditionally with a specified probability. | |
Attributes: | |
degrees (float): Degree range for random rotations. | |
translate (float): Fraction of total width and height for random translation. | |
scale (float): Scaling factor interval, e.g., a scale factor of 0.1 allows a resize between 90%-110%. | |
shear (float): Shear intensity (angle in degrees). | |
perspective (float): Perspective distortion factor. | |
border (tuple): Tuple specifying mosaic border. | |
pre_transform (callable): A function/transform to apply to the image before starting the random transformation. | |
Methods: | |
affine_transform(img, border): Applies a series of affine transformations to the image. | |
apply_bboxes(bboxes, M): Transforms bounding boxes using the calculated affine matrix. | |
apply_segments(segments, M): Transforms segments and generates new bounding boxes. | |
apply_keypoints(keypoints, M): Transforms keypoints. | |
__call__(labels): Main method to apply transformations to both images and their corresponding annotations. | |
box_candidates(box1, box2): Filters out bounding boxes that don't meet certain criteria post-transformation. | |
""" | |
def __init__( | |
self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None | |
): | |
"""Initializes RandomPerspective object with transformation parameters.""" | |
self.degrees = degrees | |
self.translate = translate | |
self.scale = scale | |
self.shear = shear | |
self.perspective = perspective | |
self.border = border # mosaic border | |
self.pre_transform = pre_transform | |
def affine_transform(self, img, border): | |
""" | |
Applies a sequence of affine transformations centered around the image center. | |
Args: | |
img (ndarray): Input image. | |
border (tuple): Border dimensions. | |
Returns: | |
img (ndarray): Transformed image. | |
M (ndarray): Transformation matrix. | |
s (float): Scale factor. | |
""" | |
# Center | |
C = np.eye(3, dtype=np.float32) | |
C[0, 2] = -img.shape[1] / 2 # x translation (pixels) | |
C[1, 2] = -img.shape[0] / 2 # y translation (pixels) | |
# Perspective | |
P = np.eye(3, dtype=np.float32) | |
P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y) | |
P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x) | |
# Rotation and Scale | |
R = np.eye(3, dtype=np.float32) | |
a = random.uniform(-self.degrees, self.degrees) | |
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations | |
s = random.uniform(1 - self.scale, 1 + self.scale) | |
# s = 2 ** random.uniform(-scale, scale) | |
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) | |
# Shear | |
S = np.eye(3, dtype=np.float32) | |
S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg) | |
S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg) | |
# Translation | |
T = np.eye(3, dtype=np.float32) | |
T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels) | |
T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels) | |
# Combined rotation matrix | |
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT | |
# Affine image | |
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed | |
if self.perspective: | |
img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114)) | |
else: # affine | |
img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114)) | |
return img, M, s | |
def apply_bboxes(self, bboxes, M): | |
""" | |
Apply affine to bboxes only. | |
Args: | |
bboxes (ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4). | |
M (ndarray): affine matrix. | |
Returns: | |
new_bboxes (ndarray): bboxes after affine, [num_bboxes, 4]. | |
""" | |
n = len(bboxes) | |
if n == 0: | |
return bboxes | |
xy = np.ones((n * 4, 3), dtype=bboxes.dtype) | |
xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 | |
xy = xy @ M.T # transform | |
xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine | |
# Create new boxes | |
x = xy[:, [0, 2, 4, 6]] | |
y = xy[:, [1, 3, 5, 7]] | |
return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T | |
def apply_segments(self, segments, M): | |
""" | |
Apply affine to segments and generate new bboxes from segments. | |
Args: | |
segments (ndarray): list of segments, [num_samples, 500, 2]. | |
M (ndarray): affine matrix. | |
Returns: | |
new_segments (ndarray): list of segments after affine, [num_samples, 500, 2]. | |
new_bboxes (ndarray): bboxes after affine, [N, 4]. | |
""" | |
n, num = segments.shape[:2] | |
if n == 0: | |
return [], segments | |
xy = np.ones((n * num, 3), dtype=segments.dtype) | |
segments = segments.reshape(-1, 2) | |
xy[:, :2] = segments | |
xy = xy @ M.T # transform | |
xy = xy[:, :2] / xy[:, 2:3] | |
segments = xy.reshape(n, -1, 2) | |
bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0) | |
segments[..., 0] = segments[..., 0].clip(bboxes[:, 0:1], bboxes[:, 2:3]) | |
segments[..., 1] = segments[..., 1].clip(bboxes[:, 1:2], bboxes[:, 3:4]) | |
return bboxes, segments | |
def apply_keypoints(self, keypoints, M): | |
""" | |
Apply affine to keypoints. | |
Args: | |
keypoints (ndarray): keypoints, [N, 17, 3]. | |
M (ndarray): affine matrix. | |
Returns: | |
new_keypoints (ndarray): keypoints after affine, [N, 17, 3]. | |
""" | |
n, nkpt = keypoints.shape[:2] | |
if n == 0: | |
return keypoints | |
xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype) | |
visible = keypoints[..., 2].reshape(n * nkpt, 1) | |
xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2) | |
xy = xy @ M.T # transform | |
xy = xy[:, :2] / xy[:, 2:3] # perspective rescale or affine | |
out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1]) | |
visible[out_mask] = 0 | |
return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3) | |
def __call__(self, labels): | |
""" | |
Affine images and targets. | |
Args: | |
labels (dict): a dict of `bboxes`, `segments`, `keypoints`. | |
""" | |
if self.pre_transform and "mosaic_border" not in labels: | |
labels = self.pre_transform(labels) | |
labels.pop("ratio_pad", None) # do not need ratio pad | |
img = labels["img"] | |
cls = labels["cls"] | |
instances = labels.pop("instances") | |
# Make sure the coord formats are right | |
instances.convert_bbox(format="xyxy") | |
instances.denormalize(*img.shape[:2][::-1]) | |
border = labels.pop("mosaic_border", self.border) | |
self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 # w, h | |
# M is affine matrix | |
# Scale for func:`box_candidates` | |
img, M, scale = self.affine_transform(img, border) | |
bboxes = self.apply_bboxes(instances.bboxes, M) | |
segments = instances.segments | |
keypoints = instances.keypoints | |
# Update bboxes if there are segments. | |
if len(segments): | |
bboxes, segments = self.apply_segments(segments, M) | |
if keypoints is not None: | |
keypoints = self.apply_keypoints(keypoints, M) | |
new_instances = Instances(bboxes, segments, keypoints, bbox_format="xyxy", normalized=False) | |
# Clip | |
new_instances.clip(*self.size) | |
# Filter instances | |
instances.scale(scale_w=scale, scale_h=scale, bbox_only=True) | |
# Make the bboxes have the same scale with new_bboxes | |
i = self.box_candidates( | |
box1=instances.bboxes.T, box2=new_instances.bboxes.T, area_thr=0.01 if len(segments) else 0.10 | |
) | |
labels["instances"] = new_instances[i] | |
labels["cls"] = cls[i] | |
labels["img"] = img | |
labels["resized_shape"] = img.shape[:2] | |
return labels | |
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): | |
""" | |
Compute box candidates based on a set of thresholds. This method compares the characteristics of the boxes | |
before and after augmentation to decide whether a box is a candidate for further processing. | |
Args: | |
box1 (numpy.ndarray): The 4,n bounding box before augmentation, represented as [x1, y1, x2, y2]. | |
box2 (numpy.ndarray): The 4,n bounding box after augmentation, represented as [x1, y1, x2, y2]. | |
wh_thr (float, optional): The width and height threshold in pixels. Default is 2. | |
ar_thr (float, optional): The aspect ratio threshold. Default is 100. | |
area_thr (float, optional): The area ratio threshold. Default is 0.1. | |
eps (float, optional): A small epsilon value to prevent division by zero. Default is 1e-16. | |
Returns: | |
(numpy.ndarray): A boolean array indicating which boxes are candidates based on the given thresholds. | |
""" | |
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] | |
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] | |
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio | |
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates | |
class RandomHSV: | |
""" | |
This class is responsible for performing random adjustments to the Hue, Saturation, and Value (HSV) channels of an | |
image. | |
The adjustments are random but within limits set by hgain, sgain, and vgain. | |
""" | |
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None: | |
""" | |
Initialize RandomHSV class with gains for each HSV channel. | |
Args: | |
hgain (float, optional): Maximum variation for hue. Default is 0.5. | |
sgain (float, optional): Maximum variation for saturation. Default is 0.5. | |
vgain (float, optional): Maximum variation for value. Default is 0.5. | |
""" | |
self.hgain = hgain | |
self.sgain = sgain | |
self.vgain = vgain | |
def __call__(self, labels): | |
""" | |
Applies random HSV augmentation to an image within the predefined limits. | |
The modified image replaces the original image in the input 'labels' dict. | |
""" | |
img = labels["img"] | |
if self.hgain or self.sgain or self.vgain: | |
r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains | |
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) | |
dtype = img.dtype # uint8 | |
x = np.arange(0, 256, dtype=r.dtype) | |
lut_hue = ((x * r[0]) % 180).astype(dtype) | |
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) | |
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) | |
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) | |
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed | |
return labels | |
class RandomFlip: | |
""" | |
Applies a random horizontal or vertical flip to an image with a given probability. | |
Also updates any instances (bounding boxes, keypoints, etc.) accordingly. | |
""" | |
def __init__(self, p=0.5, direction="horizontal", flip_idx=None) -> None: | |
""" | |
Initializes the RandomFlip class with probability and direction. | |
Args: | |
p (float, optional): The probability of applying the flip. Must be between 0 and 1. Default is 0.5. | |
direction (str, optional): The direction to apply the flip. Must be 'horizontal' or 'vertical'. | |
Default is 'horizontal'. | |
flip_idx (array-like, optional): Index mapping for flipping keypoints, if any. | |
""" | |
assert direction in ["horizontal", "vertical"], f"Support direction `horizontal` or `vertical`, got {direction}" | |
assert 0 <= p <= 1.0 | |
self.p = p | |
self.direction = direction | |
self.flip_idx = flip_idx | |
def __call__(self, labels): | |
""" | |
Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly. | |
Args: | |
labels (dict): A dictionary containing the keys 'img' and 'instances'. 'img' is the image to be flipped. | |
'instances' is an object containing bounding boxes and optionally keypoints. | |
Returns: | |
(dict): The same dict with the flipped image and updated instances under the 'img' and 'instances' keys. | |
""" | |
img = labels["img"] | |
instances = labels.pop("instances") | |
instances.convert_bbox(format="xywh") | |
h, w = img.shape[:2] | |
h = 1 if instances.normalized else h | |
w = 1 if instances.normalized else w | |
# Flip up-down | |
if self.direction == "vertical" and random.random() < self.p: | |
img = np.flipud(img) | |
instances.flipud(h) | |
if self.direction == "horizontal" and random.random() < self.p: | |
img = np.fliplr(img) | |
instances.fliplr(w) | |
# For keypoints | |
if self.flip_idx is not None and instances.keypoints is not None: | |
instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :]) | |
labels["img"] = np.ascontiguousarray(img) | |
labels["instances"] = instances | |
return labels | |
class LetterBox: | |
"""Resize image and padding for detection, instance segmentation, pose.""" | |
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32): | |
"""Initialize LetterBox object with specific parameters.""" | |
self.new_shape = new_shape | |
self.auto = auto | |
self.scaleFill = scaleFill | |
self.scaleup = scaleup | |
self.stride = stride | |
self.center = center # Put the image in the middle or top-left | |
def __call__(self, labels=None, image=None): | |
"""Return updated labels and image with added border.""" | |
if labels is None: | |
labels = {} | |
img = labels.get("img") if image is None else image | |
shape = img.shape[:2] # current shape [height, width] | |
new_shape = labels.pop("rect_shape", self.new_shape) | |
if isinstance(new_shape, int): | |
new_shape = (new_shape, new_shape) | |
# Scale ratio (new / old) | |
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) | |
if not self.scaleup: # only scale down, do not scale up (for better val mAP) | |
r = min(r, 1.0) | |
# Compute padding | |
ratio = r, r # width, height ratios | |
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) | |
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding | |
if self.auto: # minimum rectangle | |
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding | |
elif self.scaleFill: # stretch | |
dw, dh = 0.0, 0.0 | |
new_unpad = (new_shape[1], new_shape[0]) | |
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios | |
if self.center: | |
dw /= 2 # divide padding into 2 sides | |
dh /= 2 | |
if shape[::-1] != new_unpad: # resize | |
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) | |
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1)) | |
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1)) | |
img = cv2.copyMakeBorder( | |
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114) | |
) # add border | |
if labels.get("ratio_pad"): | |
labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation | |
if len(labels): | |
labels = self._update_labels(labels, ratio, dw, dh) | |
labels["img"] = img | |
labels["resized_shape"] = new_shape | |
return labels | |
else: | |
return img | |
def _update_labels(self, labels, ratio, padw, padh): | |
"""Update labels.""" | |
labels["instances"].convert_bbox(format="xyxy") | |
labels["instances"].denormalize(*labels["img"].shape[:2][::-1]) | |
labels["instances"].scale(*ratio) | |
labels["instances"].add_padding(padw, padh) | |
return labels | |
class CopyPaste: | |
""" | |
Implements the Copy-Paste augmentation as described in the paper https://arxiv.org/abs/2012.07177. This class is | |
responsible for applying the Copy-Paste augmentation on images and their corresponding instances. | |
""" | |
def __init__(self, p=0.5) -> None: | |
""" | |
Initializes the CopyPaste class with a given probability. | |
Args: | |
p (float, optional): The probability of applying the Copy-Paste augmentation. Must be between 0 and 1. | |
Default is 0.5. | |
""" | |
self.p = p | |
def __call__(self, labels): | |
""" | |
Applies the Copy-Paste augmentation to the given image and instances. | |
Args: | |
labels (dict): A dictionary containing: | |
- 'img': The image to augment. | |
- 'cls': Class labels associated with the instances. | |
- 'instances': Object containing bounding boxes, and optionally, keypoints and segments. | |
Returns: | |
(dict): Dict with augmented image and updated instances under the 'img', 'cls', and 'instances' keys. | |
Notes: | |
1. Instances are expected to have 'segments' as one of their attributes for this augmentation to work. | |
2. This method modifies the input dictionary 'labels' in place. | |
""" | |
im = labels["img"] | |
cls = labels["cls"] | |
h, w = im.shape[:2] | |
instances = labels.pop("instances") | |
instances.convert_bbox(format="xyxy") | |
instances.denormalize(w, h) | |
if self.p and len(instances.segments): | |
n = len(instances) | |
_, w, _ = im.shape # height, width, channels | |
im_new = np.zeros(im.shape, np.uint8) | |
# Calculate ioa first then select indexes randomly | |
ins_flip = deepcopy(instances) | |
ins_flip.fliplr(w) | |
ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M) | |
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) | |
n = len(indexes) | |
for j in random.sample(list(indexes), k=round(self.p * n)): | |
cls = np.concatenate((cls, cls[[j]]), axis=0) | |
instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0) | |
cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) | |
result = cv2.flip(im, 1) # augment segments (flip left-right) | |
i = cv2.flip(im_new, 1).astype(bool) | |
im[i] = result[i] | |
labels["img"] = im | |
labels["cls"] = cls | |
labels["instances"] = instances | |
return labels | |
class Albumentations: | |
""" | |
Albumentations transformations. | |
Optional, uninstall package to disable. Applies Blur, Median Blur, convert to grayscale, Contrast Limited Adaptive | |
Histogram Equalization, random change of brightness and contrast, RandomGamma and lowering of image quality by | |
compression. | |
""" | |
def __init__(self, p=1.0): | |
"""Initialize the transform object for YOLO bbox formatted params.""" | |
self.p = p | |
self.transform = None | |
prefix = colorstr("albumentations: ") | |
try: | |
import albumentations as A | |
check_version(A.__version__, "1.0.3", hard=True) # version requirement | |
# Transforms | |
T = [ | |
A.Blur(p=0.01), | |
A.MedianBlur(p=0.01), | |
A.ToGray(p=0.01), | |
A.CLAHE(p=0.01), | |
A.RandomBrightnessContrast(p=0.0), | |
A.RandomGamma(p=0.0), | |
A.ImageCompression(quality_lower=75, p=0.0), | |
] | |
self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"])) | |
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p)) | |
except ImportError: # package not installed, skip | |
pass | |
except Exception as e: | |
LOGGER.info(f"{prefix}{e}") | |
def __call__(self, labels): | |
"""Generates object detections and returns a dictionary with detection results.""" | |
im = labels["img"] | |
cls = labels["cls"] | |
if len(cls): | |
labels["instances"].convert_bbox("xywh") | |
labels["instances"].normalize(*im.shape[:2][::-1]) | |
bboxes = labels["instances"].bboxes | |
# TODO: add supports of segments and keypoints | |
if self.transform and random.random() < self.p: | |
new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed | |
if len(new["class_labels"]) > 0: # skip update if no bbox in new im | |
labels["img"] = new["image"] | |
labels["cls"] = np.array(new["class_labels"]) | |
bboxes = np.array(new["bboxes"], dtype=np.float32) | |
labels["instances"].update(bboxes=bboxes) | |
return labels | |
# TODO: technically this is not an augmentation, maybe we should put this to another files | |
class Format: | |
""" | |
Formats image annotations for object detection, instance segmentation, and pose estimation tasks. The class | |
standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch DataLoader. | |
Attributes: | |
bbox_format (str): Format for bounding boxes. Default is 'xywh'. | |
normalize (bool): Whether to normalize bounding boxes. Default is True. | |
return_mask (bool): Return instance masks for segmentation. Default is False. | |
return_keypoint (bool): Return keypoints for pose estimation. Default is False. | |
mask_ratio (int): Downsample ratio for masks. Default is 4. | |
mask_overlap (bool): Whether to overlap masks. Default is True. | |
batch_idx (bool): Keep batch indexes. Default is True. | |
bgr (float): The probability to return BGR images. Default is 0.0. | |
""" | |
def __init__( | |
self, | |
bbox_format="xywh", | |
normalize=True, | |
return_mask=False, | |
return_keypoint=False, | |
return_obb=False, | |
mask_ratio=4, | |
mask_overlap=True, | |
batch_idx=True, | |
bgr=0.0, | |
): | |
"""Initializes the Format class with given parameters.""" | |
self.bbox_format = bbox_format | |
self.normalize = normalize | |
self.return_mask = return_mask # set False when training detection only | |
self.return_keypoint = return_keypoint | |
self.return_obb = return_obb | |
self.mask_ratio = mask_ratio | |
self.mask_overlap = mask_overlap | |
self.batch_idx = batch_idx # keep the batch indexes | |
self.bgr = bgr | |
def __call__(self, labels): | |
"""Return formatted image, classes, bounding boxes & keypoints to be used by 'collate_fn'.""" | |
img = labels.pop("img") | |
h, w = img.shape[:2] | |
cls = labels.pop("cls") | |
instances = labels.pop("instances") | |
instances.convert_bbox(format=self.bbox_format) | |
instances.denormalize(w, h) | |
nl = len(instances) | |
if self.return_mask: | |
if nl: | |
masks, instances, cls = self._format_segments(instances, cls, w, h) | |
masks = torch.from_numpy(masks) | |
else: | |
masks = torch.zeros( | |
1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio | |
) | |
labels["masks"] = masks | |
if self.normalize: | |
instances.normalize(w, h) | |
labels["img"] = self._format_img(img) | |
labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl) | |
labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4)) | |
if self.return_keypoint: | |
labels["keypoints"] = torch.from_numpy(instances.keypoints) | |
if self.return_obb: | |
labels["bboxes"] = ( | |
xyxyxyxy2xywhr(torch.from_numpy(instances.segments)) if len(instances.segments) else torch.zeros((0, 5)) | |
) | |
# Then we can use collate_fn | |
if self.batch_idx: | |
labels["batch_idx"] = torch.zeros(nl) | |
return labels | |
def _format_img(self, img): | |
"""Format the image for YOLO from Numpy array to PyTorch tensor.""" | |
if len(img.shape) < 3: | |
img = np.expand_dims(img, -1) | |
img = img.transpose(2, 0, 1) | |
img = np.ascontiguousarray(img[::-1] if random.uniform(0, 1) > self.bgr else img) | |
img = torch.from_numpy(img) | |
return img | |
def _format_segments(self, instances, cls, w, h): | |
"""Convert polygon points to bitmap.""" | |
segments = instances.segments | |
if self.mask_overlap: | |
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio) | |
masks = masks[None] # (640, 640) -> (1, 640, 640) | |
instances = instances[sorted_idx] | |
cls = cls[sorted_idx] | |
else: | |
masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio) | |
return masks, instances, cls | |
def v8_transforms(dataset, imgsz, hyp, stretch=False): | |
"""Convert images to a size suitable for YOLOv8 training.""" | |
pre_transform = Compose( | |
[ | |
Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), | |
CopyPaste(p=hyp.copy_paste), | |
RandomPerspective( | |
degrees=hyp.degrees, | |
translate=hyp.translate, | |
scale=hyp.scale, | |
shear=hyp.shear, | |
perspective=hyp.perspective, | |
pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)), | |
), | |
] | |
) | |
flip_idx = dataset.data.get("flip_idx", []) # for keypoints augmentation | |
if dataset.use_keypoints: | |
kpt_shape = dataset.data.get("kpt_shape", None) | |
if len(flip_idx) == 0 and hyp.fliplr > 0.0: | |
hyp.fliplr = 0.0 | |
LOGGER.warning("WARNING β οΈ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'") | |
elif flip_idx and (len(flip_idx) != kpt_shape[0]): | |
raise ValueError(f"data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}") | |
return Compose( | |
[ | |
pre_transform, | |
MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup), | |
Albumentations(p=1.0), | |
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v), | |
RandomFlip(direction="vertical", p=hyp.flipud), | |
RandomFlip(direction="horizontal", p=hyp.fliplr, flip_idx=flip_idx), | |
] | |
) # transforms | |
# Classification augmentations ----------------------------------------------------------------------------------------- | |
def classify_transforms( | |
size=224, | |
mean=DEFAULT_MEAN, | |
std=DEFAULT_STD, | |
interpolation: T.InterpolationMode = T.InterpolationMode.BILINEAR, | |
crop_fraction: float = DEFAULT_CROP_FTACTION, | |
): | |
""" | |
Classification transforms for evaluation/inference. Inspired by timm/data/transforms_factory.py. | |
Args: | |
size (int): image size | |
mean (tuple): mean values of RGB channels | |
std (tuple): std values of RGB channels | |
interpolation (T.InterpolationMode): interpolation mode. default is T.InterpolationMode.BILINEAR. | |
crop_fraction (float): fraction of image to crop. default is 1.0. | |
Returns: | |
(T.Compose): torchvision transforms | |
""" | |
if isinstance(size, (tuple, list)): | |
assert len(size) == 2 | |
scale_size = tuple(math.floor(x / crop_fraction) for x in size) | |
else: | |
scale_size = math.floor(size / crop_fraction) | |
scale_size = (scale_size, scale_size) | |
# aspect ratio is preserved, crops center within image, no borders are added, image is lost | |
if scale_size[0] == scale_size[1]: | |
# simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg) | |
tfl = [T.Resize(scale_size[0], interpolation=interpolation)] | |
else: | |
# resize shortest edge to matching target dim for non-square target | |
tfl = [T.Resize(scale_size)] | |
tfl += [T.CenterCrop(size)] | |
tfl += [ | |
T.ToTensor(), | |
T.Normalize( | |
mean=torch.tensor(mean), | |
std=torch.tensor(std), | |
), | |
] | |
return T.Compose(tfl) | |
# Classification augmentations train --------------------------------------------------------------------------------------- | |
def classify_augmentations( | |
size=224, | |
mean=DEFAULT_MEAN, | |
std=DEFAULT_STD, | |
scale=None, | |
ratio=None, | |
hflip=0.5, | |
vflip=0.0, | |
auto_augment=None, | |
hsv_h=0.015, # image HSV-Hue augmentation (fraction) | |
hsv_s=0.4, # image HSV-Saturation augmentation (fraction) | |
hsv_v=0.4, # image HSV-Value augmentation (fraction) | |
force_color_jitter=False, | |
erasing=0.0, | |
interpolation: T.InterpolationMode = T.InterpolationMode.BILINEAR, | |
): | |
""" | |
Classification transforms with augmentation for training. Inspired by timm/data/transforms_factory.py. | |
Args: | |
size (int): image size | |
scale (tuple): scale range of the image. default is (0.08, 1.0) | |
ratio (tuple): aspect ratio range of the image. default is (3./4., 4./3.) | |
mean (tuple): mean values of RGB channels | |
std (tuple): std values of RGB channels | |
hflip (float): probability of horizontal flip | |
vflip (float): probability of vertical flip | |
auto_augment (str): auto augmentation policy. can be 'randaugment', 'augmix', 'autoaugment' or None. | |
hsv_h (float): image HSV-Hue augmentation (fraction) | |
hsv_s (float): image HSV-Saturation augmentation (fraction) | |
hsv_v (float): image HSV-Value augmentation (fraction) | |
force_color_jitter (bool): force to apply color jitter even if auto augment is enabled | |
erasing (float): probability of random erasing | |
interpolation (T.InterpolationMode): interpolation mode. default is T.InterpolationMode.BILINEAR. | |
Returns: | |
(T.Compose): torchvision transforms | |
""" | |
# Transforms to apply if albumentations not installed | |
if not isinstance(size, int): | |
raise TypeError(f"classify_transforms() size {size} must be integer, not (list, tuple)") | |
scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range | |
ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0)) # default imagenet ratio range | |
primary_tfl = [T.RandomResizedCrop(size, scale=scale, ratio=ratio, interpolation=interpolation)] | |
if hflip > 0.0: | |
primary_tfl += [T.RandomHorizontalFlip(p=hflip)] | |
if vflip > 0.0: | |
primary_tfl += [T.RandomVerticalFlip(p=vflip)] | |
secondary_tfl = [] | |
disable_color_jitter = False | |
if auto_augment: | |
assert isinstance(auto_augment, str) | |
# color jitter is typically disabled if AA/RA on, | |
# this allows override without breaking old hparm cfgs | |
disable_color_jitter = not force_color_jitter | |
if auto_augment == "randaugment": | |
if TORCHVISION_0_11: | |
secondary_tfl += [T.RandAugment(interpolation=interpolation)] | |
else: | |
LOGGER.warning('"auto_augment=randaugment" requires torchvision >= 0.11.0. Disabling it.') | |
elif auto_augment == "augmix": | |
if TORCHVISION_0_13: | |
secondary_tfl += [T.AugMix(interpolation=interpolation)] | |
else: | |
LOGGER.warning('"auto_augment=augmix" requires torchvision >= 0.13.0. Disabling it.') | |
elif auto_augment == "autoaugment": | |
if TORCHVISION_0_10: | |
secondary_tfl += [T.AutoAugment(interpolation=interpolation)] | |
else: | |
LOGGER.warning('"auto_augment=autoaugment" requires torchvision >= 0.10.0. Disabling it.') | |
else: | |
raise ValueError( | |
f'Invalid auto_augment policy: {auto_augment}. Should be one of "randaugment", ' | |
f'"augmix", "autoaugment" or None' | |
) | |
if not disable_color_jitter: | |
secondary_tfl += [T.ColorJitter(brightness=hsv_v, contrast=hsv_v, saturation=hsv_s, hue=hsv_h)] | |
final_tfl = [ | |
T.ToTensor(), | |
T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)), | |
T.RandomErasing(p=erasing, inplace=True), | |
] | |
return T.Compose(primary_tfl + secondary_tfl + final_tfl) | |
# NOTE: keep this class for backward compatibility | |
class ClassifyLetterBox: | |
""" | |
YOLOv8 LetterBox class for image preprocessing, designed to be part of a transformation pipeline, e.g., | |
T.Compose([LetterBox(size), ToTensor()]). | |
Attributes: | |
h (int): Target height of the image. | |
w (int): Target width of the image. | |
auto (bool): If True, automatically solves for short side using stride. | |
stride (int): The stride value, used when 'auto' is True. | |
""" | |
def __init__(self, size=(640, 640), auto=False, stride=32): | |
""" | |
Initializes the ClassifyLetterBox class with a target size, auto-flag, and stride. | |
Args: | |
size (Union[int, Tuple[int, int]]): The target dimensions (height, width) for the letterbox. | |
auto (bool): If True, automatically calculates the short side based on stride. | |
stride (int): The stride value, used when 'auto' is True. | |
""" | |
super().__init__() | |
self.h, self.w = (size, size) if isinstance(size, int) else size | |
self.auto = auto # pass max size integer, automatically solve for short side using stride | |
self.stride = stride # used with auto | |
def __call__(self, im): | |
""" | |
Resizes the image and pads it with a letterbox method. | |
Args: | |
im (numpy.ndarray): The input image as a numpy array of shape HWC. | |
Returns: | |
(numpy.ndarray): The letterboxed and resized image as a numpy array. | |
""" | |
imh, imw = im.shape[:2] | |
r = min(self.h / imh, self.w / imw) # ratio of new/old dimensions | |
h, w = round(imh * r), round(imw * r) # resized image dimensions | |
# Calculate padding dimensions | |
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else (self.h, self.w) | |
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) | |
# Create padded image | |
im_out = np.full((hs, ws, 3), 114, dtype=im.dtype) | |
im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) | |
return im_out | |
# NOTE: keep this class for backward compatibility | |
class CenterCrop: | |
"""YOLOv8 CenterCrop class for image preprocessing, designed to be part of a transformation pipeline, e.g., | |
T.Compose([CenterCrop(size), ToTensor()]). | |
""" | |
def __init__(self, size=640): | |
"""Converts an image from numpy array to PyTorch tensor.""" | |
super().__init__() | |
self.h, self.w = (size, size) if isinstance(size, int) else size | |
def __call__(self, im): | |
""" | |
Resizes and crops the center of the image using a letterbox method. | |
Args: | |
im (numpy.ndarray): The input image as a numpy array of shape HWC. | |
Returns: | |
(numpy.ndarray): The center-cropped and resized image as a numpy array. | |
""" | |
imh, imw = im.shape[:2] | |
m = min(imh, imw) # min dimension | |
top, left = (imh - m) // 2, (imw - m) // 2 | |
return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) | |
# NOTE: keep this class for backward compatibility | |
class ToTensor: | |
"""YOLOv8 ToTensor class for image preprocessing, i.e., T.Compose([LetterBox(size), ToTensor()]).""" | |
def __init__(self, half=False): | |
"""Initialize YOLOv8 ToTensor object with optional half-precision support.""" | |
super().__init__() | |
self.half = half | |
def __call__(self, im): | |
""" | |
Transforms an image from a numpy array to a PyTorch tensor, applying optional half-precision and normalization. | |
Args: | |
im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order. | |
Returns: | |
(torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized to [0, 1]. | |
""" | |
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous | |
im = torch.from_numpy(im) # to torch | |
im = im.half() if self.half else im.float() # uint8 to fp16/32 | |
im /= 255.0 # 0-255 to 0.0-1.0 | |
return im | |