Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import copy | |
import cv2 | |
import numpy as np | |
from ultralytics.utils import LOGGER | |
class GMC: | |
""" | |
Generalized Motion Compensation (GMC) class for tracking and object detection in video frames. | |
This class provides methods for tracking and detecting objects based on several tracking algorithms including ORB, | |
SIFT, ECC, and Sparse Optical Flow. It also supports downscaling of frames for computational efficiency. | |
Attributes: | |
method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'. | |
downscale (int): Factor by which to downscale the frames for processing. | |
prevFrame (np.ndarray): Stores the previous frame for tracking. | |
prevKeyPoints (list): Stores the keypoints from the previous frame. | |
prevDescriptors (np.ndarray): Stores the descriptors from the previous frame. | |
initializedFirstFrame (bool): Flag to indicate if the first frame has been processed. | |
Methods: | |
__init__(self, method='sparseOptFlow', downscale=2): Initializes a GMC object with the specified method | |
and downscale factor. | |
apply(self, raw_frame, detections=None): Applies the chosen method to a raw frame and optionally uses | |
provided detections. | |
applyEcc(self, raw_frame, detections=None): Applies the ECC algorithm to a raw frame. | |
applyFeatures(self, raw_frame, detections=None): Applies feature-based methods like ORB or SIFT to a raw frame. | |
applySparseOptFlow(self, raw_frame, detections=None): Applies the Sparse Optical Flow method to a raw frame. | |
""" | |
def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None: | |
""" | |
Initialize a video tracker with specified parameters. | |
Args: | |
method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'. | |
downscale (int): Downscale factor for processing frames. | |
""" | |
super().__init__() | |
self.method = method | |
self.downscale = max(1, int(downscale)) | |
if self.method == "orb": | |
self.detector = cv2.FastFeatureDetector_create(20) | |
self.extractor = cv2.ORB_create() | |
self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING) | |
elif self.method == "sift": | |
self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20) | |
self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20) | |
self.matcher = cv2.BFMatcher(cv2.NORM_L2) | |
elif self.method == "ecc": | |
number_of_iterations = 5000 | |
termination_eps = 1e-6 | |
self.warp_mode = cv2.MOTION_EUCLIDEAN | |
self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps) | |
elif self.method == "sparseOptFlow": | |
self.feature_params = dict( | |
maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04 | |
) | |
elif self.method in {"none", "None", None}: | |
self.method = None | |
else: | |
raise ValueError(f"Error: Unknown GMC method:{method}") | |
self.prevFrame = None | |
self.prevKeyPoints = None | |
self.prevDescriptors = None | |
self.initializedFirstFrame = False | |
def apply(self, raw_frame: np.array, detections: list = None) -> np.array: | |
""" | |
Apply object detection on a raw frame using specified method. | |
Args: | |
raw_frame (np.ndarray): The raw frame to be processed. | |
detections (list): List of detections to be used in the processing. | |
Returns: | |
(np.ndarray): Processed frame. | |
Examples: | |
>>> gmc = GMC() | |
>>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]])) | |
array([[1, 2, 3], | |
[4, 5, 6]]) | |
""" | |
if self.method in ["orb", "sift"]: | |
return self.applyFeatures(raw_frame, detections) | |
elif self.method == "ecc": | |
return self.applyEcc(raw_frame) | |
elif self.method == "sparseOptFlow": | |
return self.applySparseOptFlow(raw_frame) | |
else: | |
return np.eye(2, 3) | |
def applyEcc(self, raw_frame: np.array) -> np.array: | |
""" | |
Apply ECC algorithm to a raw frame. | |
Args: | |
raw_frame (np.ndarray): The raw frame to be processed. | |
Returns: | |
(np.ndarray): Processed frame. | |
Examples: | |
>>> gmc = GMC() | |
>>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]])) | |
array([[1, 2, 3], | |
[4, 5, 6]]) | |
""" | |
height, width, _ = raw_frame.shape | |
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) | |
H = np.eye(2, 3, dtype=np.float32) | |
# Downscale image | |
if self.downscale > 1.0: | |
frame = cv2.GaussianBlur(frame, (3, 3), 1.5) | |
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale)) | |
width = width // self.downscale | |
height = height // self.downscale | |
# Handle first frame | |
if not self.initializedFirstFrame: | |
# Initialize data | |
self.prevFrame = frame.copy() | |
# Initialization done | |
self.initializedFirstFrame = True | |
return H | |
# Run the ECC algorithm. The results are stored in warp_matrix. | |
# (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria) | |
try: | |
(_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1) | |
except Exception as e: | |
LOGGER.warning(f"WARNING: find transform failed. Set warp as identity {e}") | |
return H | |
def applyFeatures(self, raw_frame: np.array, detections: list = None) -> np.array: | |
""" | |
Apply feature-based methods like ORB or SIFT to a raw frame. | |
Args: | |
raw_frame (np.ndarray): The raw frame to be processed. | |
detections (list): List of detections to be used in the processing. | |
Returns: | |
(np.ndarray): Processed frame. | |
Examples: | |
>>> gmc = GMC() | |
>>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]])) | |
array([[1, 2, 3], | |
[4, 5, 6]]) | |
""" | |
height, width, _ = raw_frame.shape | |
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) | |
H = np.eye(2, 3) | |
# Downscale image | |
if self.downscale > 1.0: | |
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale)) | |
width = width // self.downscale | |
height = height // self.downscale | |
# Find the keypoints | |
mask = np.zeros_like(frame) | |
mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255 | |
if detections is not None: | |
for det in detections: | |
tlbr = (det[:4] / self.downscale).astype(np.int_) | |
mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0 | |
keypoints = self.detector.detect(frame, mask) | |
# Compute the descriptors | |
keypoints, descriptors = self.extractor.compute(frame, keypoints) | |
# Handle first frame | |
if not self.initializedFirstFrame: | |
# Initialize data | |
self.prevFrame = frame.copy() | |
self.prevKeyPoints = copy.copy(keypoints) | |
self.prevDescriptors = copy.copy(descriptors) | |
# Initialization done | |
self.initializedFirstFrame = True | |
return H | |
# Match descriptors | |
knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2) | |
# Filter matches based on smallest spatial distance | |
matches = [] | |
spatialDistances = [] | |
maxSpatialDistance = 0.25 * np.array([width, height]) | |
# Handle empty matches case | |
if len(knnMatches) == 0: | |
# Store to next iteration | |
self.prevFrame = frame.copy() | |
self.prevKeyPoints = copy.copy(keypoints) | |
self.prevDescriptors = copy.copy(descriptors) | |
return H | |
for m, n in knnMatches: | |
if m.distance < 0.9 * n.distance: | |
prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt | |
currKeyPointLocation = keypoints[m.trainIdx].pt | |
spatialDistance = ( | |
prevKeyPointLocation[0] - currKeyPointLocation[0], | |
prevKeyPointLocation[1] - currKeyPointLocation[1], | |
) | |
if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and ( | |
np.abs(spatialDistance[1]) < maxSpatialDistance[1] | |
): | |
spatialDistances.append(spatialDistance) | |
matches.append(m) | |
meanSpatialDistances = np.mean(spatialDistances, 0) | |
stdSpatialDistances = np.std(spatialDistances, 0) | |
inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances | |
goodMatches = [] | |
prevPoints = [] | |
currPoints = [] | |
for i in range(len(matches)): | |
if inliers[i, 0] and inliers[i, 1]: | |
goodMatches.append(matches[i]) | |
prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt) | |
currPoints.append(keypoints[matches[i].trainIdx].pt) | |
prevPoints = np.array(prevPoints) | |
currPoints = np.array(currPoints) | |
# Draw the keypoint matches on the output image | |
# if False: | |
# import matplotlib.pyplot as plt | |
# matches_img = np.hstack((self.prevFrame, frame)) | |
# matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR) | |
# W = self.prevFrame.shape[1] | |
# for m in goodMatches: | |
# prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_) | |
# curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_) | |
# curr_pt[0] += W | |
# color = np.random.randint(0, 255, 3) | |
# color = (int(color[0]), int(color[1]), int(color[2])) | |
# | |
# matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA) | |
# matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1) | |
# matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1) | |
# | |
# plt.figure() | |
# plt.imshow(matches_img) | |
# plt.show() | |
# Find rigid matrix | |
if prevPoints.shape[0] > 4: | |
H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC) | |
# Handle downscale | |
if self.downscale > 1.0: | |
H[0, 2] *= self.downscale | |
H[1, 2] *= self.downscale | |
else: | |
LOGGER.warning("WARNING: not enough matching points") | |
# Store to next iteration | |
self.prevFrame = frame.copy() | |
self.prevKeyPoints = copy.copy(keypoints) | |
self.prevDescriptors = copy.copy(descriptors) | |
return H | |
def applySparseOptFlow(self, raw_frame: np.array) -> np.array: | |
""" | |
Apply Sparse Optical Flow method to a raw frame. | |
Args: | |
raw_frame (np.ndarray): The raw frame to be processed. | |
Returns: | |
(np.ndarray): Processed frame. | |
Examples: | |
>>> gmc = GMC() | |
>>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]])) | |
array([[1, 2, 3], | |
[4, 5, 6]]) | |
""" | |
height, width, _ = raw_frame.shape | |
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) | |
H = np.eye(2, 3) | |
# Downscale image | |
if self.downscale > 1.0: | |
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale)) | |
# Find the keypoints | |
keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params) | |
# Handle first frame | |
if not self.initializedFirstFrame: | |
self.prevFrame = frame.copy() | |
self.prevKeyPoints = copy.copy(keypoints) | |
self.initializedFirstFrame = True | |
return H | |
# Find correspondences | |
matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None) | |
# Leave good correspondences only | |
prevPoints = [] | |
currPoints = [] | |
for i in range(len(status)): | |
if status[i]: | |
prevPoints.append(self.prevKeyPoints[i]) | |
currPoints.append(matchedKeypoints[i]) | |
prevPoints = np.array(prevPoints) | |
currPoints = np.array(currPoints) | |
# Find rigid matrix | |
if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == prevPoints.shape[0]): | |
H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC) | |
if self.downscale > 1.0: | |
H[0, 2] *= self.downscale | |
H[1, 2] *= self.downscale | |
else: | |
LOGGER.warning("WARNING: not enough matching points") | |
self.prevFrame = frame.copy() | |
self.prevKeyPoints = copy.copy(keypoints) | |
return H | |
def reset_params(self) -> None: | |
"""Reset parameters.""" | |
self.prevFrame = None | |
self.prevKeyPoints = None | |
self.prevDescriptors = None | |
self.initializedFirstFrame = False | |