Spaces:
Sleeping
Sleeping
from ultralytics.models.yolo.detect import DetectionPredictor | |
import torch | |
from ultralytics.utils import ops | |
from ultralytics.engine.results import Results | |
class YOLOv10DetectionPredictor(DetectionPredictor): | |
def postprocess(self, preds, img, orig_imgs): | |
if isinstance(preds, dict): | |
preds = preds["one2one"] | |
if isinstance(preds, (list, tuple)): | |
preds = preds[0] | |
if preds.shape[-1] == 6: | |
pass | |
else: | |
preds = preds.transpose(-1, -2) | |
bboxes, scores, labels = ops.v10postprocess(preds, self.args.max_det, preds.shape[-1]-4) | |
bboxes = ops.xywh2xyxy(bboxes) | |
preds = torch.cat([bboxes, scores.unsqueeze(-1), labels.unsqueeze(-1)], dim=-1) | |
mask = preds[..., 4] > self.args.conf | |
if self.args.classes is not None: | |
mask = mask & (preds[..., 5:6] == torch.tensor(self.args.classes, device=preds.device).unsqueeze(0)).any(2) | |
preds = [p[mask[idx]] for idx, p in enumerate(preds)] | |
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list | |
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) | |
results = [] | |
for i, pred in enumerate(preds): | |
orig_img = orig_imgs[i] | |
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) | |
img_path = self.batch[0][i] | |
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) | |
return results | |